Enhancement of entanglement percolation in quantum networks via lattice transformations

被引:24
|
作者
John Lapeyre, G., Jr. [1 ]
Wehr, Jan [2 ]
Lewenstein, Maciej [1 ,3 ]
机构
[1] Inst Ciencies Foton, ICFO, E-08860 Barcelona, Spain
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Lluis Co 23, ICREA, Barcelona 08010, Spain
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
关键词
lattice theory; percolation; probability; protocols; quantum communication; quantum computing; quantum entanglement; REPEATERS; STATE;
D O I
10.1103/PhysRevA.79.042324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure but nonmaximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols, and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Generalized Quantum Probability and Entanglement Enhancement Witnessing
    Jaeger, Gregg
    FOUNDATIONS OF PHYSICS, 2012, 42 (06) : 752 - 759
  • [32] Generalized Quantum Probability and Entanglement Enhancement Witnessing
    Gregg Jaeger
    Foundations of Physics, 2012, 42 : 752 - 759
  • [33] On the Bipartite Entanglement Capacity of Quantum Networks
    Vardoyan, Gayane
    van Milligen, Emily
    Guha, Saikat
    Wehner, Stephanie
    Towsley, Don
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5 : 1 - 14
  • [34] Strong entanglement distribution of quantum networks
    Yang, Xue
    Yan-Han Yang
    Ming-Xing Luo
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [35] Advancements in MultiMode Quantum Entanglement Networks
    Jiawei, Wang
    Pei, Zhang
    Yin, Cai
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (18):
  • [36] Unconditional entanglement interface for quantum networks
    Baune, Christoph
    Gniesmer, Jan
    Kocsis, Sacha
    Vollmer, Christina E.
    Zell, Petrissa
    Fiurasek, Jaromir
    Schnabel, Roman
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [37] Deterministic entanglement distribution on series-parallel quantum networks
    Meng, Xiangyi
    Cui, Yulong
    Gao, Jianxi
    Havlin, Shlomo
    Ruckenstein, Andrei E.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [38] Properties of distribution and entanglement in discrete-time quantum walk with percolation
    An Zhi-Yun
    Li Zhi-Jian
    ACTA PHYSICA SINICA, 2017, 66 (13)
  • [39] Performance metrics for the continuous distribution of entanglement in multiuser quantum networks
    Inesta, Alvaro G.
    Wehner, Stephanie
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [40] Practical figures of merit and thresholds for entanglement distribution in quantum networks
    Khatri, Sumeet
    Matyas, Corey T.
    Siddiqui, Aliza U.
    Dowling, Jonathan P.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):