On a Conjecture Concerning the Friendly Index Sets of Trees

被引:0
作者
Salehi, Ebrahim [1 ]
De, Shipra [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
Labeling; friendly labeling; friendly index set; caterpillars; CORDIAL GRAPHS; CONSTRUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E) and a binary labeling f : V(G) -> Z(2), let upsilon(f) (i) vertical bar f-1(i)vertical bar. The labling f is said to be friendly if vertical bar upsilon(f)(1) - upsilon(f)(0)vertical bar <= 1. Any vertex labeling f : V(G) -> Z(2) induces an edge labeling f * : E(G) -> Z(2) defined by f *(xy) = vertical bar f (x) - f (y)vertical bar. Let e(f)(i) = vertical bar f *(-1) (i)vertical bar. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) - {vertical bar e(f)(1) - ef(0)vertical bar : f is a friendly vertex labeling of G }. In [15] Lee and Ng conjectured that the friendly index sets of trees will form an arithmetic progression. This conjecture has been mentioned in [17] and other manuscripts. In this paper we will first determine the friendly index sets of certain caterpillars of diameter four. Then we will disprove the conjecture by presenting an infinite number of trees whose friendly index sets do not form an arithmetic progression.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 21 条
  • [1] Benson M., 1989, CONGR NUMER CONF J N, V68, P49
  • [2] CAHIT I, 1990, UTILITAS MATHEMATICA, V37, P189
  • [3] CAHIT I, 1987, ARS COMBINATORIA, V23, P201
  • [4] CAHIT I, 1990, BIBLIGRAPHISCHES I M, P209
  • [5] The computational complexity of cordial and equitable labelling
    Cairnie, N
    Edwards, K
    [J]. DISCRETE MATHEMATICS, 2000, 216 (1-3) : 29 - 34
  • [6] Chartrand Gary, 2005, Introduction to Graph Theory
  • [7] Frucht R., 1970, AEQUATIONES MATH, V4, P322, DOI DOI 10.1007/BF01844162
  • [8] HO YS, 1990, ARS COMBINATORIA, V29, P169
  • [9] HOVAY M, 1991, DISCRETE MATH, V93, P183
  • [10] KIRCHHERR WW, 1991, ARS COMBINATORIA, V31, P127