Tungsten-Nitride-Coated Carbon Nanospheres as a Sulfur Host for High-Performance Lithium-Sulfur Batteries

被引:18
|
作者
Liu, Honghong [1 ,2 ,3 ]
Shen, Hangjia [1 ,3 ]
Li, Rongrong [1 ,2 ,3 ]
Liu, Siqi [1 ,3 ]
Turak, Ayse [4 ]
Yang, Minghui [1 ,3 ]
机构
[1] Chinese Acad Sci, Solid State Funct Mat Res Lab, Inst Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4L7, Canada
关键词
lithium-sulfur batteries; cathode materials; tungsten nitride; chemical adsorption; shuttling effects; GRAPHENE-OXIDE; COMPOSITE; CATHODE; SPHERES;
D O I
10.1002/celc.201900139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur batteries have attracted wide attention, owing to their outstanding properties such as high theoretical specific capacity, low cost, and non-toxic nature. However, the low conductivity of the sulfur cathode and its shuttling effects are still a challenge for the energy-storage system. In this work, we describe a potential solution to address this challenge, using carbon nanospheres encapsulated in a tungsten nitride (WN) layer, interconnected with WN nanorods. After successfully synthesizing this composite in situ by using a straightforward method, we applied it as the sulfur host for lithium-sulfur batteries. The results demonstrate a strong chemical trapping ability of the WN shell towards lithium polysulfides (LiPSs), and a strong electron-transfer ability of the WN nanorods. Together, these effects alleviate LiPSs ' shuttling from carbon nanospheres (CNS) and give rise to a high sulfur content (70 wt %) in the as-prepared S/WN-CNS material. When compared to traditional S/N-CNS electrodes, the tuned S/WN-CNS cathodes deliver an outstanding electrochemical performance, including a high initial capacity of 1351 mAh g(-1) at 0.1 C and superior long-term cycling stability with 80 % retention of the initial capacity with 3 mg cm(-2) after 500 cycles at 0.5 C. As such, a high specific capacity, excellent rate capacity, and long cycling stability are achieved. Our approach provides a path to a broad class of high-performance Li-S battery applications based on nanostructured WN materials.
引用
收藏
页码:2074 / 2079
页数:6
相关论文
共 50 条
  • [21] Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries
    Liu, Xianbin
    Xiao, Zechen
    Lai, Changgan
    Zou, Shuai
    Zhang, Ming
    Liu, Kaixi
    Yin, Yanhong
    Liang, Tongxiang
    Wu, Ziping
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 48 : 84 - 91
  • [22] Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries
    Jiang, Guangshen
    Xu, Fei
    Yang, Shuhao
    Wu, Jianping
    Wei, Bingqing
    Wang, Hongqiang
    JOURNAL OF POWER SOURCES, 2018, 395 : 77 - 84
  • [23] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [24] Hollow TiN Nanospheres as Advanced Host Materials for High Performance Lithium-Sulfur Batteries
    Luo, Jie
    Zheng, Jianming
    Dang, Bo
    CHEMISTRYSELECT, 2019, 4 (47): : 14027 - 14030
  • [25] Co-W bimetallic carbides as sulfur host for high-performance lithium-sulfur batteries
    Zhang, Dongke
    Huang, Ting
    Zhao, Pengfei
    Zhang, Ze
    Qi, Xingtao
    Yang, Zhenyu
    Cai, Jianxin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (12) : 16577 - 16588
  • [26] Dual Dopamine Derived Polydopamine Coated N-Doped Porous Carbon Spheres as a Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Fan, Zengjie
    Ding, Bing
    Guo, Hongshuai
    Shi, Minyuan
    Zhang, Yadi
    Dong, Shengyang
    Zhang, Tengfei
    Dou, Hui
    Zhang, Xiaogang
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (45) : 10710 - 10717
  • [27] Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Sun, Qingqing
    Chen, Kaixiang
    Liu, Yubin
    Li, Yafeng
    Wei, Mingdeng
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (64) : 16312 - 16318
  • [28] A Porous Carbon Polyhedron/Carbon Nanotube Based Hybrid Material as Multifunctional Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Ren, Juan
    Song, Zhicui
    Zhou, Xuemei
    Chai, Yuru
    Lu, Xiaoli
    Zheng, Qiaoji
    Xu, Chenggang
    Lin, Dunmin
    CHEMELECTROCHEM, 2019, 6 (13) : 3410 - 3419
  • [29] Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries
    Jin, Kangke
    Zhou, Xufeng
    Liu, Zhaoping
    NANOMATERIALS, 2015, 5 (03): : 1481 - 1492
  • [30] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587