Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry

被引:156
作者
Burdyny, Thomas [1 ]
Graham, Percival J. [1 ]
Pang, Yuanjie [1 ]
Cao-Thang Dinh [2 ]
Liu, Min [2 ]
Sargent, Edward H. [2 ]
Sinton, David [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Nanomorphology; CO2; reduction; Gas-evolution; Limiting current; Electrocatalysis; Mass transport; EVOLVING ELECTRODES; MASS-TRANSFER; HYDROGEN EVOLUTION; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; COPPER ELECTRODES; AU NANOPARTICLES; BUBBLE COVERAGE; CURRENT-DENSITY; SELECTIVITY;
D O I
10.1021/acssuschemeng.7b00023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured CO2 reduction catalysts now achieve near-unity reaction selectivity at increasingly improved Tafel slopes and low overpotentials. With excellent surface reaction kinetics, these catalysts encounter CO2 mass transport limitations at current densities ca. 20 mA cm(-2). We show here that- in addition to influencing reaction rates and local reactant concentration- the morphology of nanostructured electrodes enhances long-range CO2 transport via their influence on gas-evolution. Sharper needle morphologies can nucleate and release bubbles as small as 20 mu m, leading to a 4-fold increase in the limiting current density compared to a nanoparticle-based catalyst alone. By extending this observation into a diffusion model that accounts for bubble-induced mass transport near the electrode's surface, diffusive transport can be directly linked to current densities and operating conditions, identifying efficient routes to >100 mA cm(-2) production. We further extend this model to study the influence of mass transport on achieving simultaneously high selectivity and current density of C2 reduction products, identifying precise control of the local fluid environment as a crucial step necessary for producing C2 over C1 products.
引用
收藏
页码:4031 / 4040
页数:10
相关论文
共 51 条
[1]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[2]   Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2 [J].
Chen, Yikai ;
Lewis, Nathan S. ;
Xiang, Chengxiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (12) :3663-3674
[3]   Operation of a Pressurized System for Continuous Reduction of CO2 [J].
Dufek, Eric J. ;
Lister, Tedd E. ;
Stone, Simon G. ;
McIlwain, Michael E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) :F514-F517
[4]   The bubble coverage of gas-evolving electrodes in a flowing electrolyte [J].
Eigeldinger, J ;
Vogt, H .
ELECTROCHIMICA ACTA, 2000, 45 (27) :4449-4456
[5]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[6]   Bubble Formation at a Gas-Evolving Microelectrode [J].
Fernandez, Damaris ;
Maurer, Paco ;
Martine, Milena ;
Coey, J. M. D. ;
Moebius, Matthias E. .
LANGMUIR, 2014, 30 (43) :13065-13074
[7]   The effect of bubble-induced liquid flow on mass transfer in bubble plumes [J].
Gong, Xiaobo ;
Takagi, Shu ;
Matsumoto, Yoichiro .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2009, 35 (02) :155-162
[8]   Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions [J].
Gupta, N ;
Gattrell, M ;
MacDougall, B .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2006, 36 (02) :161-172
[9]   Large current density CO2 reduction under high pressure using gas diffusion electrodes [J].
Hara, K ;
Sakata, T .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1997, 70 (03) :571-576
[10]   Systematic Analysis of Electrochemical CO2 Reduction with Various Reaction Parameters using Combinatorial Reactors [J].
Hashiba, Hiroshi ;
Yotsuhashi, Satoshi ;
Deguchi, Masahiro ;
Yamada, Yuka .
ACS COMBINATORIAL SCIENCE, 2016, 18 (04) :203-208