A random matrix model with non-pairwise contracted indices

被引:9
作者
Lionni, Luca [1 ]
Sasakura, Naoki [1 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan
关键词
DOUBLE-SCALING LIMIT; QUANTUM-GRAVITY; POLYMERS;
D O I
10.1093/ptep/ptz057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a random matrix model with both pairwise and non-pairwise contracted indices. The partition function of the matrix model is similar to that appearing in some replicated systems with random tensor couplings, such as the p-spin spherical model for the spin glass. We analyze the model using Feynman diagrammatic expansions, and provide an exhaustive characterization of the graphs that dominate when the dimensions of the pairwise and (or) non-pairwise contracted indices are large. We apply this to investigate the properties of the wave function of a toy model closely related to a tensor model in the Hamilton formalism, which is studied in a quantum gravity context, and obtain a result in favor of the consistency of the quantum probabilistic interpretation of this tensor model.
引用
收藏
页数:39
相关论文
共 38 条
[1]  
Akemann G., 2011, OXFORD HDB RANDOM MA
[2]   3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
MODERN PHYSICS LETTERS A, 1991, 6 (12) :1133-1146
[3]   BRANCHED POLYMERS FROM A DOUBLE-SCALING LIMIT OF MATRIX MODELS [J].
ANDERSON, A ;
MYERS, RC ;
PERIWAL, V .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :463-479
[4]   COMPLEX RANDOM SURFACES [J].
ANDERSON, A ;
MYERS, RC ;
PERIWAL, V .
PHYSICS LETTERS B, 1991, 254 (1-2) :89-93
[5]  
ANDERSON G., 2009, STUDIES ADV MATH, V118
[6]  
Arnowitt R, 2008, GEN RELAT GRAVIT, V40, P1997, DOI 10.1007/s10714-008-0661-1
[7]  
Bonzom V., ARXIV180810314MATHPH
[8]   Random tensor models in the large N limit: Uncoloring the colored tensor models [J].
Bonzom, Valentin ;
Gurau, Razvan ;
Rivasseau, Vincent .
PHYSICAL REVIEW D, 2012, 85 (08)
[9]   Critical behavior of colored tensor models in the large N limit [J].
Bonzom, Valentin ;
Gurau, Razvan ;
Riello, Aldo ;
Rivasseau, Vincent .
NUCLEAR PHYSICS B, 2011, 853 (01) :174-195
[10]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150