Asymptotics for sparse exponential random graph models

被引:5
作者
Yin, Mei [1 ]
Zhu, Lingjiong [2 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80210 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Sparse random graphs; exponential random graphs; asymptotics; CONVERGENT SEQUENCES; CLASSIFICATION; SINGULARITIES; CANCER;
D O I
10.1214/16-BJPS319
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotics for sparse exponential random graph models where the parameters may depend on the number of vertices of the graph. We obtain exact estimates for the mean and variance of the limiting probability distribution and the limiting log partition function of the edge (single)-star model. They are in sharp contrast to the corresponding asymptotics in dense exponential random graph models. Similar analysis is done for directed sparse exponential random graph models parametrized by edges and multiple outward stars.
引用
收藏
页码:394 / 412
页数:19
相关论文
共 37 条
  • [1] Processes on unimodular random networks
    Aldous, David
    Lyons, Russell
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1454 - 1508
  • [2] [Anonymous], SOCIAL NETWORK ANAL
  • [3] [Anonymous], 2014, ARXIV14080744
  • [4] [Anonymous], 2014, ARXIV14012906
  • [5] [Anonymous], 2009, CURR DEV MATH
  • [6] Aristoff D., 2014, ARXIV14046514
  • [7] Asymptotic structure and singularities in constrained directed graphs
    Aristoff, David
    Zhu, Lingjiong
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4154 - 4177
  • [8] Benjamini I., 2001, Electron. J. Probab., V6, P13, DOI DOI 10.1214/EJP.V6-96
  • [9] STATISTICAL-ANALYSIS OF NON-LATTICE DATA
    BESAG, J
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1975, 24 (03) : 179 - 195
  • [10] Convergent sequences of, dense graphs I: Subgraph frequencies, metric properties and testing
    Borgs, C.
    Chayes, J. T.
    Lovasz, L.
    Sos, V. T.
    Vesztergombi, K.
    [J]. ADVANCES IN MATHEMATICS, 2008, 219 (06) : 1801 - 1851