SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

被引:2
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
OPERATORS AND MATRICES | 2020年 / 14卷 / 04期
关键词
Hilbert space; space of operators; norm derivatives; semi-smoothness; NORM;
D O I
10.7153/oam-2020-14-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigations of the smooth points in the operator spaces K (H) and L(H) were started in [J. R. Holub, Math. Ann. 201 (1973), 157-163] and [T. J. Abatzoglou, Math. Ann. 239 (1979), 129-135]. The aim of this paper is to present a description of semi-smooth points in the operator spaces L(H-1, H-2) and K (H-1, H-2).
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
[41]   Weighted weak group inverse for Hilbert space operators [J].
Mosic, Dijana ;
Zhang, Daochang .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) :709-726
[42]   (A, m)-SYMMETRIC COMMUTING TUPLES OF OPERATORS ON A HILBERT SPACE [J].
Cho, Muneo ;
Mahmoud, Sid Ahmed Ould Ahmed .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03) :931-947
[43]   REFINED INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Bhunia, Pintu ;
Jana, Suvendu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2025, 55 (02) :323-332
[44]   Some Inequalities for the Numerical Radius of Hilbert Space Operators [J].
Gao, Fugen ;
Hu, Yijuan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
[45]   NEW NORM INEQUALITIES FOR COMMUTATORS OF HILBERT SPACE OPERATORS [J].
Moosavi, B. ;
Hosseini, M. shah .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2025, 14 (01) :119-129
[46]   CONVERGENCE OF INFINITE PRODUCTS OF NONEXPANSIVE OPERATORS IN HILBERT SPACE [J].
Pustylnik, Evgeniy ;
Reich, Simeon ;
Zaslavski, Alexander J. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (03) :461-474
[47]   Weighted weak group inverse for Hilbert space operators [J].
Dijana Mosić ;
Daochang Zhang .
Frontiers of Mathematics in China, 2020, 15 :709-726
[48]   Norm and numerical radius inequalities for Hilbert space operators [J].
Baharak Moosavi ;
Mohsen Shah Hosseini .
The Journal of Analysis, 2023, 31 :1393-1400
[49]   Some norm inequalities for accretive Hilbert space operators [J].
Moosavi, Baharak ;
Hosseini, Mohsen Shah .
CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02) :327-340
[50]   A highly non-smooth norm on Hilbert space [J].
Jiří Matoušek ;
Eva Matoušková .
Israel Journal of Mathematics, 1999, 112 :1-27