SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

被引:2
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
OPERATORS AND MATRICES | 2020年 / 14卷 / 04期
关键词
Hilbert space; space of operators; norm derivatives; semi-smoothness; NORM;
D O I
10.7153/oam-2020-14-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigations of the smooth points in the operator spaces K (H) and L(H) were started in [J. R. Holub, Math. Ann. 201 (1973), 157-163] and [T. J. Abatzoglou, Math. Ann. 239 (1979), 129-135]. The aim of this paper is to present a description of semi-smooth points in the operator spaces L(H-1, H-2) and K (H-1, H-2).
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
[31]   Norm and numerical radius inequalities for Hilbert space operators [J].
Moosavi, Baharak ;
Hosseini, Mohsen Shah .
JOURNAL OF ANALYSIS, 2023, 31 (02) :1393-1400
[32]   On (A, m)-isometric commuting tuples of operators on a Hilbert space [J].
Ghribi, Salima ;
Jeridi, Nader ;
Rabaoui, Rchid .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11) :2097-2116
[33]   Joint m-quasihyponormal operators on a Hilbert space [J].
Mahmoud, Sid Ahmed Ould Ahmed ;
Alshammari, Hadi Obaid .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (03)
[34]   The commuting graph of bounded linear operators on a Hilbert space [J].
Ambrozie, C. ;
Bracic, J. ;
Kuzma, B. ;
Mueller, V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) :1068-1087
[35]   Joint m-quasihyponormal operators on a Hilbert space [J].
Sid Ahmed Ould Ahmed Mahmoud ;
Hadi Obaid Alshammari .
Annals of Functional Analysis, 2021, 12
[36]   Upper Bounds for the Numerical Radius of Hilbert Space Operators [J].
Jaafari, Elahe ;
Asgari, Mohammad Sadegh ;
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) :237-245
[37]   A new proof of an inequality of Bohr for Hilbert space operators [J].
Abramovich, Shoshana ;
Baric, Josipa ;
Pecaric, Josip .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) :1432-1435
[38]   CONVERGENCE OF INFINITE PRODUCTS OF NONEXPANSIVE OPERATORS IN HILBERT SPACE [J].
Pustylnik, Evgeniy ;
Reich, Simeon ;
Zaslavski, Alexander J. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (03) :461-474
[39]   Weighted weak group inverse for Hilbert space operators [J].
Dijana Mosić ;
Daochang Zhang .
Frontiers of Mathematics in China, 2020, 15 :709-726
[40]   Norm and numerical radius inequalities for Hilbert space operators [J].
Baharak Moosavi ;
Mohsen Shah Hosseini .
The Journal of Analysis, 2023, 31 :1393-1400