SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

被引:2
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
OPERATORS AND MATRICES | 2020年 / 14卷 / 04期
关键词
Hilbert space; space of operators; norm derivatives; semi-smoothness; NORM;
D O I
10.7153/oam-2020-14-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigations of the smooth points in the operator spaces K (H) and L(H) were started in [J. R. Holub, Math. Ann. 201 (1973), 157-163] and [T. J. Abatzoglou, Math. Ann. 239 (1979), 129-135]. The aim of this paper is to present a description of semi-smooth points in the operator spaces L(H-1, H-2) and K (H-1, H-2).
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
[11]   Invariant Subspaces of Operators on a Hilbert Space [J].
Bikchentaev, A. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (04) :613-616
[12]   Invariant Subspaces of Operators on a Hilbert Space [J].
A. M. Bikchentaev .
Lobachevskii Journal of Mathematics, 2020, 41 :613-616
[13]   On (A,m)-Symmetric Operators in a Hilbert Space [J].
Jeridi, N. ;
Rabaoui, R. .
RESULTS IN MATHEMATICS, 2019, 74 (03)
[14]   Interpolation of polynomial operators in a Hilbert space [J].
Kashpur E.F. ;
Khlobystov V.V. .
Journal of Mathematical Sciences, 1997, 86 (1) :2455-2458
[15]   HILBERT-TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS [J].
Krnic, Mario .
QUAESTIONES MATHEMATICAE, 2013, 36 (02) :209-223
[16]   Numerical Radius Inequalities for Products of Hilbert Space Operators [J].
Hosseini, M. Shah ;
Moosavi, B. .
JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
[17]   Approximation of unbounded operators by bounded operators in a Hilbert space [J].
V. F. Babenko ;
R. O. Bilichenko .
Ukrainian Mathematical Journal, 2009, 61 :179-187
[18]   Approximation of unbounded operators by bounded operators in a Hilbert space [J].
Babenko, V. F. ;
Bilichenko, R. O. .
UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (02) :179-187
[19]   Invertibility of nonnegatively Hamiltonian operators in a Hilbert space [J].
Kurina, GA .
DIFFERENTIAL EQUATIONS, 2001, 37 (06) :880-882
[20]   Some Numerical Radius Inequalities for Products of Hilbert Space Operators [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
FILOMAT, 2019, 33 (07) :2089-2093