SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

被引:2
|
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
OPERATORS AND MATRICES | 2020年 / 14卷 / 04期
关键词
Hilbert space; space of operators; norm derivatives; semi-smoothness; NORM;
D O I
10.7153/oam-2020-14-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigations of the smooth points in the operator spaces K (H) and L(H) were started in [J. R. Holub, Math. Ann. 201 (1973), 157-163] and [T. J. Abatzoglou, Math. Ann. 239 (1979), 129-135]. The aim of this paper is to present a description of semi-smooth points in the operator spaces L(H-1, H-2) and K (H-1, H-2).
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
  • [11] Invariant Subspaces of Operators on a Hilbert Space
    Bikchentaev, A. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (04) : 613 - 616
  • [12] Interpolation of polynomial operators in a Hilbert space
    Kashpur E.F.
    Khlobystov V.V.
    Journal of Mathematical Sciences, 1997, 86 (1) : 2455 - 2458
  • [13] On the D Order for Hilbert Space Operators
    Zhong, Jin
    Liu, Xiaoji
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 461 - 464
  • [14] Bounds of operators on the Hilbert sequence space
    Roopaei, Hadi
    CONCRETE OPERATORS, 2020, 7 (01): : 155 - 165
  • [15] Quadratic Inequalities for Hilbert Space Operators
    V. A. Khatskevich
    M. I. Ostrovskii
    V. S. Shulman
    Integral Equations and Operator Theory, 2007, 59 : 19 - 34
  • [16] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [17] Approximation of unbounded operators by bounded operators in a Hilbert space
    V. F. Babenko
    R. O. Bilichenko
    Ukrainian Mathematical Journal, 2009, 61 : 179 - 187
  • [18] Approximation of unbounded operators by bounded operators in a Hilbert space
    Babenko, V. F.
    Bilichenko, R. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (02) : 179 - 187
  • [19] Some Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    FILOMAT, 2019, 33 (07) : 2089 - 2093
  • [20] Numerical Radius Parallelism of Hilbert Space Operators
    Mehrazin, Marzieh
    Amyari, Maryam
    Zamani, Ali
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (03) : 821 - 829