SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE

被引:2
|
作者
Wojcik, Pawel [1 ]
机构
[1] Pedag Univ Cracow, Inst Math, Podchorazych 2, PL-30084 Krakow, Poland
来源
OPERATORS AND MATRICES | 2020年 / 14卷 / 04期
关键词
Hilbert space; space of operators; norm derivatives; semi-smoothness; NORM;
D O I
10.7153/oam-2020-14-59
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigations of the smooth points in the operator spaces K (H) and L(H) were started in [J. R. Holub, Math. Ann. 201 (1973), 157-163] and [T. J. Abatzoglou, Math. Ann. 239 (1979), 129-135]. The aim of this paper is to present a description of semi-smooth points in the operator spaces L(H-1, H-2) and K (H-1, H-2).
引用
收藏
页码:951 / 958
页数:8
相关论文
共 50 条
  • [1] PERIODIC POINTS AND PERIODS FOR OPERATORS ON HILBERT SPACE
    Chiranjeevi, P.
    Kannan, V.
    Gopal, Sharan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 4233 - 4237
  • [2] Semi-smooth Points in Some Classical Function Spaces
    Deregowska, Beata
    Gryszka, Beata
    Gryszka, Karol
    Wojcik, Pawel
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [3] Semi-smooth Points in Some Classical Function Spaces
    Beata Derȩgowska
    Beata Gryszka
    Karol Gryszka
    Paweł Wójcik
    Results in Mathematics, 2022, 77
  • [4] SOME NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERT SPACE OPERATORS
    Feki, Kais
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1385 - 1405
  • [5] Quadratic inequalities for Hilbert space operators
    Khatskevich, V. A.
    Ostrovskii, M. I.
    Shulman, V. S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (01) : 19 - 34
  • [6] On (A, m)-Symmetric Operators in a Hilbert Space
    N. Jeridi
    R. Rabaoui
    Results in Mathematics, 2019, 74
  • [7] The gDMP inverse of Hilbert space operators
    Mosic, Dijana
    Djordjevic, Dragan S.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (02) : 555 - 573
  • [8] HILBERT-TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS
    Krnic, Mario
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 209 - 223
  • [9] Invariant Subspaces of Operators on a Hilbert Space
    A. M. Bikchentaev
    Lobachevskii Journal of Mathematics, 2020, 41 : 613 - 616
  • [10] On (A,m)-Symmetric Operators in a Hilbert Space
    Jeridi, N.
    Rabaoui, R.
    RESULTS IN MATHEMATICS, 2019, 74 (03)