Comparative Prediction of Single and Double Diode Parameters for Solar Cell Models with firefly Algorithm

被引:0
作者
Louzazni, Mohamed [1 ]
Khouya, Ahmed [1 ]
Amechnoue, Khalid [1 ]
Craciunescu, Aurelian [2 ]
Mussetta, Marco [3 ]
机构
[1] Abdelmalek Essaadi Univ, Natl Sch Appl Sci ENSA, Lab Innovat Technol, Tangier, Morocco
[2] Univ Politehn Bucuresti, Fac Elect Engn, Bucharest, Romania
[3] Politecn Milan, Dipartimento Energia, Via La Masa 34, I-20156 Milan, Italy
来源
2017 10TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE) | 2017年
关键词
Solar cell; Double diodes; Firefly algorithm; Constraint functions; Intrinsic parameters; OPTIMIZATION ALGORITHM; IDENTIFICATION; EXTRACTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the non-linearity of current-voltage of solar cell model, the conventional methods are incapable to extract the parameters of solar cell with high accuracy. The implicit non-linear equation describing the single and double diodes solar cell in five and seven parameters is rewritten as optimization problems with constraint functions and it is solved by using a firefly algorithm optimization. The firefly algorithm is a nature-inspired stochastic optimization algorithm, and able to solve modern global optimization for nonlinear and complex system, based on the flashing patterns and behavior of firefly's swarm. Moreover, this paper develops a unique solar cell modelling approach that incorporates search and optimization techniques for the determination of equivalent circuit parameters of RTC France Company mono-crystalline silicon solar cell single and double diodes at 33 degrees C and 1000W/m(2) from experimental current-voltage. The statistical errors are used to verify the accuracy of the results. Finally, accuracy of the extracted parameters is verified by comparing the current-voltage curve generated from simulation with those provided by determined experimentally and with different recent algorithms.
引用
收藏
页码:860 / 865
页数:6
相关论文
共 27 条
[1]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[2]  
Apostolopoulos T., 2010, INT J COMB, V2011
[3]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[4]   A COMPARATIVE-STUDY OF EXTRACTION METHODS FOR SOLAR-CELL MODEL PARAMETERS [J].
CHAN, DSH ;
PHILLIPS, JR ;
PHANG, JCH .
SOLID-STATE ELECTRONICS, 1986, 29 (03) :329-337
[5]   Parameters extraction from commercial solar cells I-V characteristics and shunt analysis [J].
Chen, Yifeng ;
Wang, Xuemeng ;
Li, Da ;
Hong, Ruijiang ;
Shen, Hui .
APPLIED ENERGY, 2011, 88 (06) :2239-2244
[6]   Parameter identification of solar cell model using Levenberg-Marquardt algorithm combined with simulated annealing [J].
Dkhichi, Fayrouz ;
Oukarfi, Benyounes ;
Fakkar, Abderrahim ;
Belbounaguia, Noureddine .
SOLAR ENERGY, 2014, 110 :781-788
[7]   Comparison of different physical models for PV power output prediction [J].
Dolara, Alberto ;
Leva, Sonia ;
Manzolini, Giampaolo .
SOLAR ENERGY, 2015, 119 :83-99
[8]  
Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835
[9]   Efficient Tool to Characterize Photovoltaic Generating Systems Using Mine Blast Algorithm [J].
El-Fergany, Attia .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (8-10) :890-901
[10]   Simulated Annealing algorithm for photovoltaic parameters identification [J].
El-Naggar, K. M. ;
AlRashidi, M. R. ;
AlHajri, M. F. ;
Al-Othrnan, A. K. .
SOLAR ENERGY, 2012, 86 (01) :266-274