Implication of grain boundary engineering on high temperature hot corrosion of alloy 617

被引:75
作者
Deepak, K. [1 ]
Mandal, Sumantra [2 ]
Athreya, C. N. [1 ]
Kim, Dong-Ik [3 ]
de Boer, B. [4 ]
Sarma, V. Subramanya [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
[3] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 02792, South Korea
[4] VDM Met GmbH, Plettenberger Str 2, D-58791 Werdohl, Germany
关键词
Superalloys; SEM; High temperature corrosion; Segregation; SUPERALLOY; BEHAVIOR; SENSITIZATION; RESISTANT; STRAIN; WATER;
D O I
10.1016/j.corsci.2016.01.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The role of grain boundary engineering (GBE) on high-temperature hot corrosion behavior of alloy 617 was evaluated by exposing both the as-received (AR) and GBE specimens in a salt-mixture of (75% Na2SO4 + 20% NaCl + 5% V2O5) at 1273 K for 24 h. The AR specimen having continuous network of random high angle grain boundaries (HAGBs) has undergone hot corrosion and substantial depletion/segregation of alloying elements through the entire cross section. The GBE specimen exhibited significantly reduced hot corrosion and depletion/segregation of alloying elements. This is attributed to the high fraction of 3-CSL triple junctions which break the percolation in the random HAGBs network. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 50 条
[21]   Effects of electropolishing on corrosion and stress corrosion cracking of Alloy 182 in high temperature water [J].
Han, Yaolei ;
Han, En-Hou ;
Peng, Qunjia ;
Ke, Wei .
CORROSION SCIENCE, 2017, 121 :1-10
[22]   Effect of grain boundary engineering on corrosion behavior of nickel-based alloy 825 in sulfur environment [J].
Fan, Zhou ;
Zhang, Yidong ;
Hu, Xiaogang ;
Yang, Dawei ;
Wang, Yang ;
Liu, Jianyi .
MATERIALS RESEARCH EXPRESS, 2021, 8 (06)
[23]   High-Temperature Corrosion of a Nickel Alloy [J].
Poilov, V. Z. ;
Kazantsev, A. L. ;
Skovorodnikov, P., V ;
Saulin, D., V ;
Uglev, N. P. ;
Puzanov, A., I .
INORGANIC MATERIALS-APPLIED RESEARCH, 2022, 13 (01) :39-43
[24]   The structure dependence of grain boundary passivation of Alloy 690 in high temperature water [J].
Feng, Xingyu ;
Zhang, Shihao ;
Liu, Pengshuai ;
Kuang, Wenjun .
ACTA MATERIALIA, 2023, 261
[25]   Enhancing mechanical property and corrosion resistance of Al0.3CoCrFeNi1.5 high entropy alloy via grain boundary engineering [J].
Hong, Lin ;
Li, Hongjun ;
Huang, Ming ;
Qin, Yuan ;
Xu, Shiyu ;
Yang, Sen .
MATERIALS CHARACTERIZATION, 2024, 217
[26]   Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy [J].
Ma, Zhimin ;
Liu, Jia ;
Liu, Shengdan ;
Zhang, Yong ;
Deng, Yunlai .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 :6866-6870
[27]   EFFECT OF ORIGINAL GRAIN SIZE ON THE BOUNDARY NETWORK IN ALLOY 690 TREATED BY GRAIN BOUNDARY ENGINEERING [J].
Liu Tingguang ;
Xia Shuang ;
Li Hui ;
Zhou Bangxin ;
Chen Wenjue .
ACTA METALLURGICA SINICA, 2011, 47 (07) :859-864
[28]   Evading the intermediate temperature brittleness of a precipitation-strengthened CoNiCr alloy by grain boundary engineering [J].
Zhang, Zhouqing ;
Ding, Qingqing ;
Gao, Yanfei ;
Wei, Xiao ;
Zhang, Ze ;
Bei, Hongbin .
MATERIALS FUTURES, 2025, 4 (01)
[29]   Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt [J].
Wang, Chaochao ;
Zhang, Jumei ;
Yu, Zhongdi ;
Wu, Jinping .
JOURNAL OF NUCLEAR MATERIALS, 2025, 604
[30]   Enhancing the Intergranular Corrosion Resistance of High-Nitrogen-Containing 316L Stainless Steels by Grain Boundary Engineering via Thermomechanical Treatment [J].
Shankar, A. Ravi ;
Shankar, Vani ;
George, R. P. ;
Philip, John .
CORROSION, 2020, 76 (09) :835-842