On zeros of approximate functions of the Rankin-Selberg L-functions

被引:0
作者
Suzuki, Masatoshi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
Rankin-Selberg L-functions; zeros; approximate functions; ZETA-FUNCTION; EISENSTEIN SERIES; FORMS;
D O I
10.4064/aa136-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Notations. As usual, Z is the ring of rational integers, ℤ>o the set of positive integers, ℂ the field of complex numbers. We denote by η the upper half-plane, and by r the full modular group PSL 2(ℤ). For a complex variable s, we put e(s) = e 2πis, Γ ℝ(s) = π -s/2/Γ(s/ 2) and Γ ℂ(s) = 2(2π) -sΓ(s). We denote by Ç(s) and Ç*(*) = Γ ℝ(S) Ç(s) Riemann zeta-function and the completed Riemann zeta-function, respectively, and denote by o- v(n) = Σ d/n d/v the divisor function. Throughout the paper, z = x + iy (x ε ℝ, y > 0) is a variable on h, and s = σ + it (σ, t €ℝ) is a complex variable. A sum over the empty set is meant to be zero. © Instytut Matematyczny PAN, 2009.
引用
收藏
页码:19 / 45
页数:27
相关论文
共 34 条
[1]  
[Anonymous], Q J OXFORD
[2]   Zeros of Asai-Eisenstein series [J].
Bauer, Hartmut .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) :219-237
[3]  
Bellman R-E., 1963, Differential-difference equations
[4]  
EGOROV AV, 2003, MAT SBORNIK, V194, P107
[5]  
GONEK SM, 2007, FINITE EULER PRODUCT
[6]   Computation of Weng's rank 2 zeta function over an algebraic number field [J].
Hayashi, Tsukasa .
JOURNAL OF NUMBER THEORY, 2007, 125 (02) :473-527
[7]   ON A RESULT OF G-POLYA CONCERNING THE RIEMANN ZETA-FUNCTION [J].
HEJHAL, DA .
JOURNAL D ANALYSE MATHEMATIQUE, 1990, 55 :59-95
[8]   COEFFICIENTS OF MAASS FORMS AND THE SIEGEL ZERO [J].
HOFFSTEIN, J ;
LOCKHART, P .
ANNALS OF MATHEMATICS, 1994, 140 (01) :161-176
[9]  
HOFFSTEIN J, 1995, INT MATH RES NOTICES, P279
[10]   All but finitely many non-trivial zeros of the approximations of the epstein zeta function are simple and on the critical line [J].
Ki, H .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :321-344