Atmospheric collapse in self-avoiding walks: a numerical study using GARM

被引:2
作者
Alvarez, J. [1 ]
Gara, M. [2 ]
Janse van Rensburg, E. J. [1 ]
Rechnitzer, A. [2 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
classical phase transitions (theory); critical exponents and amplitudes (theory); THETA-POINT; MONTE-CARLO; UNIVERSALITY CLASSES; CONNECTIVE CONSTANT; LINEAR POLYMER; SQUARE LATTICE; SCALING FORM; SIMULATIONS; TRANSITION; EXPONENTS;
D O I
10.1088/1742-5468/2009/12/P12005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The coil-globule collapse of dilute linear polymers in a poor solvent is generally thought to be a second-order phase transition through theta-polymers at the critical point. A common model for the collapse transition of polymers is a lattice self-avoiding walk with a nearest neighbour attraction. In this paper we consider an alternative set of models for collapsing linear polymers. In particular, we simulate lattice walks weighted by an atmospheric statistic using the flatGARM algorithm. These models of walks undergo a collapse transition at a critical value of the parameters of the model. This transition appears to be discontinuous (first order), in contrast to the theta-transition in walks with nearest neighbour contacts. This places our models in a different universality class from the theta-transition in collapsing self-avoiding walks.
引用
收藏
页数:31
相关论文
共 44 条
[1]   Scaling of a collapsed polymer globule in two dimensions [J].
Baiesi, M ;
Orlandini, E ;
Stella, AL .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[2]   Two-dimensional oriented self-avoiding walks with parallel contacts [J].
Barkema, GT ;
Bastolla, U ;
Grassberger, P .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1311-1324
[3]   RANDOM-PATHS AND RANDOM SURFACES ON A DIGITAL-COMPUTER [J].
BERG, B ;
FOERSTER, D .
PHYSICS LETTERS B, 1981, 106 (04) :323-326
[4]   NEW MONTE-CARLO METHOD FOR THE SELF-AVOIDING WALK [J].
BERRETTI, A ;
SOKAL, AD .
JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (3-4) :483-531
[5]   ON THE BEHAVIOR OF COLLAPSING LINEAR AND BRANCHED POLYMERS [J].
BRAK, R ;
GUTTMANN, AJ ;
WHITTINGTON, SG .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 8 (1-3) :255-267
[6]   COLLAPSE TRANSITION OF SELF-AVOIDING WALKS ON A SQUARE LATTICE IN THE BULK AND NEAR A LINEAR WALL - THE UNIVERSALITY CLASSES OF THE THETA AND THETA' POINTS [J].
CHANG, IS ;
MEIROVITCH, H .
PHYSICAL REVIEW E, 1993, 48 (05) :3656-3660
[7]   CONFORMATION OF A POLYMER-CHAIN AT THE THETA'-POINT - CONNECTION TO THE EXTERNAL PERIMETER OF A PERCOLATION CLUSTER [J].
CONIGLIO, A ;
JAN, N ;
MAJID, I ;
STANLEY, HE .
PHYSICAL REVIEW B, 1987, 35 (07) :3617-3620
[8]  
De Gennes P.-G., 1979, SCALING CONCEPTS POL
[9]   POLYMERS AND G-ABSOLUTE-VALUE-PHI-4 THEORY IN FOUR DIMENSIONS [J].
DECARVALHO, CA ;
CARACCIOLO, S ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1983, 215 (02) :209-248
[10]  
DEGENNES PG, 1975, J PHYS LETT-PARIS, V36, pL55, DOI 10.1051/jphyslet:0197500360305500