The effect of mechanical behavior on bendability of ultrahigh-strength steel

被引:24
作者
Arola, Anna-Maija [1 ]
Kaijalainen, Antti [1 ]
Kesti, Vili [2 ]
Troive, Lars [3 ]
Larkiola, Jari [1 ]
Porter, David [1 ]
机构
[1] Univ Oulu, Ctr Adv Steel Res, Mat & Mech Engn, POB 4200, FI-90014 Oulu, Finland
[2] SSAB Europe Oy, Rautaruukintie 155, Raahe 92101, Finland
[3] SSAB Borlange, Brygga 53, S-78184 Sverige, Sweden
关键词
Ductility; Mechanical testing; Bendability; Work-hardening; Microstructure; Strain localization; Failure;
D O I
10.1016/j.mtcomm.2020.101943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bendability is an important property of ultrahigh-strength steels since the typical applications of such materials include structures manufactured by air-bending. Conventional methods to evaluate bendability, such as the bending test according to the standard VDA-238 or the conventional tensile test do not provide sufficient information to evaluate bendability of ultrahigh-strength steels due to the average nature of the material response in these tests. In this study, the mechanical properties were determined using thin tensile specimens cut from the surface of the sheet and the evaluation of bendability was carried out using frictionless bending tests. The results of the experiments and FE-modelling presented in this paper reveal that the mechanical properties of the sheet surface have a significant impact on bendability. Novel ultrahigh-strength steel with better work-hardening capacity at the surface caused by a layer of relatively soft ferrite and lower bainite has good bendability, especially when the bend line is aligned transverse to the rolling direction. Microstructural investigations reveal that in a conventional steel with a relatively hard surface microstructure, the deformation localizes into shear bands that eventually lead to fracture, but similar shear banding was not present in the novel steel surface. This can be attributed to the better work-hardening capacity which delays the onset of shear localization and fracture.
引用
收藏
页数:14
相关论文
共 32 条
[1]  
Akeret R., 1978, Aluminium, V54, P117
[2]  
[Anonymous], 2010, 7438 SFSEN ISO
[3]   AN ANALYSIS OF SHEAR LOCALIZATION DURING BENDING OF A POLYCRYSTALLINE SHEET [J].
BECKER, R .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (03) :491-496
[4]  
Bergstrom Y., 2010, J METALL, V2010
[5]  
Dao M, 2001, PHILOS MAG A, V81, P1997, DOI 10.1080/001418610010019620
[6]   Analysis of fracture in sheet bending and roll forming [J].
Deole, Aditya D. ;
Barnett, Matthew ;
Weiss, Matthias .
PROCEEDINGS OF 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2018), 2018, 1960
[7]   Local plastic strain evolution in a high strength dual-phase steel [J].
Ghadbeigi, H. ;
Pinna, C. ;
Celotto, S. ;
Yates, J. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (18-19) :5026-5032
[8]   Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels [J].
Heibel, Sebastian ;
Dettinger, Thomas ;
Nester, Winfried ;
Clausmeyer, Till ;
Tekkaya, A. Erman .
MATERIALS, 2018, 11 (05)
[9]  
Heikkala JA, 2012, PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, VOL 4, P163
[10]   SHEAR BAND FORMATION IN PLANE-STRAIN [J].
HUTCHINSON, JW ;
TVERGAARD, V .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1981, 17 (05) :451-470