UNIQUENESS OF POSITIVE AND COMPACTON-TYPE SOLUTIONS FOR A RESONANT QUASILINEAR PROBLEM

被引:5
作者
Anello, Giovanni [1 ]
Vilasi, Luca [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, Phys Sci & Earth Sci, Viale F Stagno Dalcontres 31, I-98166 Messina, Italy
关键词
Quasilinear problem; resonant problem; positive solution; compacton-type solution; uniqueness; BOUNDARY-VALUE-PROBLEMS; P-LAPLACIAN;
D O I
10.12775/TMNA.2016.090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a one-dimensional p-Laplacian resonant problem with p-sublinear terms and depending on a positive parameter. By using quadrature methods we provide the exact number of positive solutions with respect to mu is an element of ]0,+infinity[. Specifically, we prove the existence of a critical value mu(1) > 0 such that the problem under examination admits: no positive solutions and a continuum of nonnegative solutions compactly supported in [0, 1] for mu is an element of ]0,mu(1)[; a unique positive solution of compacton-type for mu = mu(1) a unique positive solution satisfying Hopf's boundary condition for mu is an element of]mu(1),+infinity[.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 11 条
[1]   Positive and compacton-type solutions for a quasilinear two-point boundary value problem [J].
Anello, Giovanni ;
Vilasi, Luca .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) :429-439
[2]   Perturbation of the p-Laplacian by vanishing nonlinearities (in one dimension) [J].
Benedikt, Jiri ;
Girg, Petr ;
Takac, Peter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (08) :3691-3703
[3]   On the Fredholm alternative for the p-Laplacian at higher eigenvalues (in one dimension) [J].
Benedikt, Jiri ;
Girg, Petr ;
Takac, Peter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :3091-3107
[4]  
Bouchala J., 2005, ELECT J DIFFERENTIAL, V2005, P1
[5]   The positive solutions of boundary value problems for a class of one-dimensional p-Laplacians [J].
Cheng, Hangang ;
Shao, Yanfang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :883-891
[6]   Branches of positive and free boundary solutions for some singular quasilinear elliptic problems [J].
Diaz, J. I. ;
Hernandez, J. ;
Mancebo, F. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :449-474
[7]   Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem [J].
Díaz, JI ;
Hernández, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07) :587-592
[8]   A counterexample to the Fredholm alternative for the p-Laplacian [J].
Drábek, P ;
Takác, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1079-1087
[9]   Exact number of solutions for a class of two-point boundary value problems with one-dimensional p-Laplacian [J].
Feng, Meiqiang ;
Zhang, Xuemei ;
Ge, Weigao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :784-792
[10]  
Gasinski L, 2007, DISCRETE CONT DYN-A, V17, P143