On some p-adic power series attached to the arithmetic of Q(ζp)

被引:4
作者
Angles, Bruno [1 ]
机构
[1] Univ Caen, Lab Nicolas Oresme, CNRS, UMR 6139, F-14032 Caen, France
关键词
p-adic L-functions; Iwasawa theory; cyclotomic fields;
D O I
10.1016/j.jnt.2006.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number and let theta be a nontrivial even character of the Galois group of Q(zeta(p))/Q. We prove that the derivative of the Iwasawa power series f (T, theta) is not congruent to zero modulo p, where f (T, theta) is associated to the p-adic L-function L-p(s, theta). (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 246
页数:26
相关论文
共 14 条
[1]   P-ADIC L-FUNCTIONS AND HIGHER-DIMENSIONAL MAGIC CUBES [J].
ADLER, A ;
WASHINGTON, LC .
JOURNAL OF NUMBER THEORY, 1995, 52 (02) :179-197
[2]   Units and norm residue symbol [J].
Anglès, B .
ACTA ARITHMETICA, 2001, 98 (01) :33-51
[3]   DIVISION VALUES IN LOCAL FIELDS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :91-116
[4]   IWASAWA INVARIANT MU-P VANISHES FOR ABELIAN NUMBER FIELDS [J].
FERRERO, B ;
WASHINGTON, LC .
ANNALS OF MATHEMATICS, 1979, 109 (02) :377-395
[5]  
LANG S, 1990, CYCLOTOMIC FIELDS, V2
[6]  
LANG S, 1990, CYCLOTOMIC FIELDS, V1
[7]  
Leopoldt V. H., 1959, J REINE ANGEW MATH, V201, P119
[8]  
LETTL G, 1990, J REINE ANGEW MATH, V404, P162
[9]   IWASAWA INVARIANTS AND KUMMER CONGRUENCES [J].
METSANKYLA, T .
JOURNAL OF NUMBER THEORY, 1978, 10 (04) :510-522
[10]  
Ribenboim P., 1979, 13 Lectures on Fermat's Last Theorem