Extending Surface-Enhanced Raman Spectroscopy to Liquids using Shell-Isolated Plasmonic Superstructures

被引:4
|
作者
Wondergem, Caterina S. [1 ]
van Swieten, Thomas P. [1 ]
Geitenbeek, Robin G. [1 ]
Erne, Ben H. [2 ]
Weckhuysen, Bert M. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis Grp, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[2] Univ Utrecht, Debye Inst Nanomat Sci, Vant Hoff Lab Phys & Colloid Chem, Padualaan 8, NL-3584 CH Utrecht, Netherlands
关键词
heterogeneous catalysis; plasmonic nanoparticles; Raman spectroscopy; reaction monitoring; SERS; GOLD NANOPARTICLES; SILICA SPHERES; SERS; SCATTERING; ADSORPTION; MECHANISM; GROWTH; SIZE; AU;
D O I
10.1002/chem.201903204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic superstructures (PS) based on Au/SiO2 were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO2 spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI). Of these three, PEI-functionalized spheres showed the highest adsorption density of Au NPs in TEM, UV/Vis and dynamic light scattering (DLS) experiments. Upon decreasing the Au NP/SiO2 sphere size ratio, an increase in adsorption density was also observed. To optimize plasmonic activity, 61 nm Au NPs were adsorbed onto 900 nm SiO2-PEI spheres and these PS were coated with an ultrathin layer (1-2 nm) of SiO2 to obtain Shell-Isolated Plasmonic Superstructures (SHIPS), preventing direct contact between Au NPs and the liquid medium. Zeta potential measurements, TEM and SHINERS showed that SiO2 coating was successful. The detection limit for SHINERS using SHIPS and a 638 nm laser was around 10(-12) m of Rhodamine (10(-15) m for uncoated PS), all with acquisition settings suitable for catalysis applications.
引用
收藏
页码:15772 / 15778
页数:7
相关论文
共 50 条
  • [41] The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties
    Michalowska, Aleksandra
    Kudelski, Andrzej
    MOLECULES, 2022, 27 (10):
  • [42] Detection of organic dyes by surface-enhanced Raman spectroscopy using plasmonic NiAg nanocavity films
    Petrus, Ondrej
    Macko, Jan
    Orinakova, Renata
    Orinak, Andrej
    Mudra, Erika
    Kupkova, Miriam
    Farka, Zdenek
    Pastucha, Matej
    Socha, Vladimir
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 249
  • [43] Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments
    Perez-Jimenez, Ana Isabel
    Lyu, Danya
    Lu, Zhixuan
    Liu, Guokun
    Ren, Bin
    CHEMICAL SCIENCE, 2020, 11 (18) : 4563 - 4577
  • [44] Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone
    Chang, Jingjing
    Canamares, Maria Vega
    Aydin, Metin
    Vetter, Wilfried
    Schreiner, Manfred
    Xu, Weiqing
    Lombardi, John R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (11) : 1557 - 1563
  • [45] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [46] Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas
    Zhang, Weihua
    Fischer, Holger
    Schmid, Thomas
    Zenobi, Renato
    Martin, Olivier J. F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) : 14672 - 14675
  • [47] Surface-enhanced Raman spectroscopy of semiconductor nanostructures
    Milekhin, A. G.
    Sveshnikova, L. L.
    Duda, T. A.
    Yeryukov, N. A.
    Rodyakina, E. E.
    Gutakovskii, A. K.
    Batsanov, S. A.
    Latyshev, A. V.
    Zahn, D. R. T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 210 - 222
  • [48] Silver nanoparticles for detection of methimazole by surface-enhanced Raman spectroscopy
    Saleh, Tawfik A.
    Al-Shalalfeh, Mutasem M.
    Al-Saadi, Abdulaziz A.
    MATERIALS RESEARCH BULLETIN, 2017, 91 : 173 - 178
  • [49] Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
    Mahurin, Shannon M.
    Surwade, Sumedh P.
    Crespo, Marcos
    Dai, Sheng
    JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (05) : 585 - 590
  • [50] Silver Nanoparticles with Many Sharp Apexes and Edges as Efficient Nanoresonators for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy
    Kolataj, Karol
    Krajczewski, Jan
    Kudelski, Andrzej
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (22) : 12383 - 12391