Extending Surface-Enhanced Raman Spectroscopy to Liquids using Shell-Isolated Plasmonic Superstructures

被引:4
|
作者
Wondergem, Caterina S. [1 ]
van Swieten, Thomas P. [1 ]
Geitenbeek, Robin G. [1 ]
Erne, Ben H. [2 ]
Weckhuysen, Bert M. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis Grp, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[2] Univ Utrecht, Debye Inst Nanomat Sci, Vant Hoff Lab Phys & Colloid Chem, Padualaan 8, NL-3584 CH Utrecht, Netherlands
关键词
heterogeneous catalysis; plasmonic nanoparticles; Raman spectroscopy; reaction monitoring; SERS; GOLD NANOPARTICLES; SILICA SPHERES; SERS; SCATTERING; ADSORPTION; MECHANISM; GROWTH; SIZE; AU;
D O I
10.1002/chem.201903204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic superstructures (PS) based on Au/SiO2 were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO2 spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI). Of these three, PEI-functionalized spheres showed the highest adsorption density of Au NPs in TEM, UV/Vis and dynamic light scattering (DLS) experiments. Upon decreasing the Au NP/SiO2 sphere size ratio, an increase in adsorption density was also observed. To optimize plasmonic activity, 61 nm Au NPs were adsorbed onto 900 nm SiO2-PEI spheres and these PS were coated with an ultrathin layer (1-2 nm) of SiO2 to obtain Shell-Isolated Plasmonic Superstructures (SHIPS), preventing direct contact between Au NPs and the liquid medium. Zeta potential measurements, TEM and SHINERS showed that SiO2 coating was successful. The detection limit for SHINERS using SHIPS and a 638 nm laser was around 10(-12) m of Rhodamine (10(-15) m for uncoated PS), all with acquisition settings suitable for catalysis applications.
引用
收藏
页码:15772 / 15778
页数:7
相关论文
共 50 条
  • [31] Mapping Surface Chemistry During Superfilling with Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy and X-ray Photoelectron Spectroscopy
    Raciti, David
    Braun, Trevor
    Walker, Angela R. Hight
    Moffat, Thomas P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [32] TopUp Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy
    Patze, Sophie
    Huebner, Uwe
    Weber, Karina
    Cialla-May, Dana
    Popp, Juergen
    ADVANCED MATERIALS INTERFACES, 2016, 3 (19):
  • [33] Ultra-trace detection of methimazole by surface-enhanced Raman spectroscopy using gold substrate
    Saleh, Tawfik A.
    Al-Shalalfeh, Mutasem M.
    Onawole, Abdulmujeeb T.
    Al-Saadi, Abdulaziz A.
    VIBRATIONAL SPECTROSCOPY, 2017, 90 : 96 - 103
  • [34] Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates
    Matricardi, Cristiano
    Hanske, Christoph
    Garcia-Pomar, Juan Luis
    Langer, Judith
    Mihi, Agustin
    Liz-Marzan, Luis M.
    ACS NANO, 2018, 12 (08) : 8531 - 8539
  • [35] Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy
    Kuehler, Paul
    Roller, Eva-Maria
    Schreiber, Robert
    Liedl, Tim
    Lohmueller, Theobald
    Feldmann, Jochen
    NANO LETTERS, 2014, 14 (05) : 2914 - 2919
  • [36] Substrates for surface-enhanced Raman spectroscopy based on TiN plasmonic antennas and waveguide platforms
    Chen, Jun
    Wang, Xiangxian
    Tang, Feng
    Ye, Xin
    Yang, Liming
    Zhang, Yubin
    RESULTS IN PHYSICS, 2020, 16
  • [37] Hydroxyapatite-nanosilver composites with plasmonic properties for application in surface-enhanced Raman spectroscopy
    Solovyeva, Elena V.
    Odintsova, Olga V.
    Svinko, Vasilisa O.
    Makeeva, Daria V.
    Danilov, Denis V.
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [38] A theoretical and experimental approach to shell-isolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes
    Ding, Song-Yuan
    Yi, Jun
    Li, Jian-Feng
    Tian, Zhong-Qun
    SURFACE SCIENCE, 2015, 631 : 73 - 80
  • [39] Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates
    Srivastava, Ketki
    Jacobs, Thimo S.
    Ostendorp, Stefan
    Jonker, Dirk
    Brzesowsky, Floor A.
    Susarrey-Arce, Arturo
    Gardeniers, Han
    Wilde, Gerhard
    Weckhuysen, Bert M.
    van den Berg, Albert
    van der Stam, Ward
    Odijk, Mathieu
    NANOSCALE, 2024, 16 (15) : 7582 - 7593
  • [40] Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Probing Riboflavin on Graphene
    Zdaniauskiene, Agne
    Ignatjev, Ilja
    Charkova, Tatjana
    Talaikis, Martynas
    Luksa, Algimantas
    Setkus, Arunas
    Niaura, Gediminas
    MATERIALS, 2022, 15 (05)