Extending Surface-Enhanced Raman Spectroscopy to Liquids using Shell-Isolated Plasmonic Superstructures

被引:4
|
作者
Wondergem, Caterina S. [1 ]
van Swieten, Thomas P. [1 ]
Geitenbeek, Robin G. [1 ]
Erne, Ben H. [2 ]
Weckhuysen, Bert M. [1 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis Grp, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[2] Univ Utrecht, Debye Inst Nanomat Sci, Vant Hoff Lab Phys & Colloid Chem, Padualaan 8, NL-3584 CH Utrecht, Netherlands
关键词
heterogeneous catalysis; plasmonic nanoparticles; Raman spectroscopy; reaction monitoring; SERS; GOLD NANOPARTICLES; SILICA SPHERES; SERS; SCATTERING; ADSORPTION; MECHANISM; GROWTH; SIZE; AU;
D O I
10.1002/chem.201903204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic superstructures (PS) based on Au/SiO2 were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO2 spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI). Of these three, PEI-functionalized spheres showed the highest adsorption density of Au NPs in TEM, UV/Vis and dynamic light scattering (DLS) experiments. Upon decreasing the Au NP/SiO2 sphere size ratio, an increase in adsorption density was also observed. To optimize plasmonic activity, 61 nm Au NPs were adsorbed onto 900 nm SiO2-PEI spheres and these PS were coated with an ultrathin layer (1-2 nm) of SiO2 to obtain Shell-Isolated Plasmonic Superstructures (SHIPS), preventing direct contact between Au NPs and the liquid medium. Zeta potential measurements, TEM and SHINERS showed that SiO2 coating was successful. The detection limit for SHINERS using SHIPS and a 638 nm laser was around 10(-12) m of Rhodamine (10(-15) m for uncoated PS), all with acquisition settings suitable for catalysis applications.
引用
收藏
页码:15772 / 15778
页数:7
相关论文
共 50 条
  • [21] Particle-dressed, Silica Shell-isolated Cavity Architectures for Surface-enhanced Raman Scattering
    Du, Yuanchun
    Yang, Sen
    Li, Huanhuan
    Chen, Shu
    Hu, Jiawen
    CHEMISTRY LETTERS, 2015, 44 (07) : 989 - 991
  • [22] Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Toward High Sensitivity and Broad Applicability
    Zhu, Yue-Zhou
    Zhou, Ru-Yu
    Hu, Shu
    Li, Jian-Feng
    Tian, Zhong-Qun
    ACS NANO, 2024, 18 (47) : 32287 - 32298
  • [23] Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle- Enhanced Raman Spectroscopy Using Single- Nanoparticle Spectroscopy
    Hu, Shu
    Wang, Jingyu
    Zhang, Yue-Jiao
    Wen, Bao-Ying
    Wu, Si-Si
    Radjenovic, Petar M.
    Yang, Zhilin
    Ren, Bin
    Li, Jian-Feng
    ACS NANO, 2022, 16 (12) : 21388 - 21396
  • [24] Surface-enhanced Raman spectroscopy in forensic analysis
    Holman, Aidan P.
    Kurouski, Dmitry
    REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 43 (01)
  • [25] Microbiological identification by surface-enhanced Raman spectroscopy
    Chauvet, Romain
    Lagarde, Fabienne
    Charrier, Thomas
    Assaf, Ali
    Thouand, Gerald
    Daniel, Philippe
    APPLIED SPECTROSCOPY REVIEWS, 2017, 52 (02) : 123 - 144
  • [26] High performance carbon dioxide electroreduction in ionic liquids with in situ shell-isolated nanoparticle-enhanced Raman spectroscopy
    Hu, Ye
    Gan, Zhongdong
    Xin, Shixian
    Fang, Wenhui
    Li, Min
    Wang, Yanlei
    Cui, Wei
    Zhao, Hong
    Li, Zengxi
    Zhang, Xiangping
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [27] Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy
    De Rosa, C.
    Auriemma, F.
    Diletto, C.
    Di Girolamo, R.
    Malafronte, A.
    Morvillo, P.
    Zito, G.
    Rusciano, G.
    Pesce, G.
    Sasso, A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) : 8061 - 8069
  • [28] In Situ Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy to Unravel Sequential Hydrogenation of Phenylacetylene over Platinum Nanoparticles
    Wondergem, Caterina S.
    Hartman, Thomas
    Weckhuysen, Bert M.
    ACS CATALYSIS, 2019, 9 (12) : 10794 - 10802
  • [29] Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells
    Zdaniauskiene, Agne
    Charkova, Tatjana
    Ignatjev, Ilja
    Melvydas, Vytautas
    Garjonyte, Rasa
    Matulaitiene, Ieva
    Talaikis, Martynas
    Niaura, Gediminas
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 240 (240)
  • [30] Multiwavelength Surface-Enhanced Raman Spectroscopy Using Rainbow Trapping in Width-Graded Plasmonic Gratings
    Kazemi-Zanjani, Nastaran
    Shayegannia, Moein
    Prinja, Rajiv
    Montazeri, Arthur O.
    Mohammadzadeh, Aliakbar
    Dixon, Katelyn
    Zhu, Siqi
    Selvaganapathy, Ponnambalam R.
    Zavodni, Anna
    Matsuura, Naomi
    Kherani, Nazir P.
    ADVANCED OPTICAL MATERIALS, 2018, 6 (04):