Constrained Fourth Order Latent Differential Equation Reduces Parameter Estimation Bias for Damped Linear Oscillator Models

被引:9
作者
Boker, Steven M. [1 ]
Moulder, Robert G. [1 ]
Sjobeck, Gustav R. [1 ]
机构
[1] Univ Virginia, Charlottesville, VA 22903 USA
关键词
Dynamical systems; latent differential equations; damped linear oscillator; continuous time; STATE; DYNAMICS; ASSOCIATIONS; VARIABILITY; CONVOLUTION; RESILIENCE; EMOTIONS; SUBJECT; SYSTEMS; STRESS;
D O I
10.1080/10705511.2019.1641816
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Second-order linear differential equations can be used as models for regulation since under a range of parameter values they can account for a return to equilibrium as well as potential oscillations in regulated variables. One method that can estimate parameters of these equations from intensive time series data is the method of Latent Differential Equations (LDE). However, the LDE method can exhibit bias in its parameters if the dimension of the time delay embedding and thus the width of the convolution kernel is not chosen wisely. This article presents a simulation study showing that a constrained fourth-order Latent Differential Equation (FOLDE) model for the second-order system almost completely eliminates bias as long as the width of the convolution kernel is less than two-thirds the period of oscillations in the data. The FOLDE model adds two degrees of freedom over the standard LDE model but significantly improves model fit.
引用
收藏
页码:202 / 218
页数:17
相关论文
共 71 条