Highly Crystalline Polyimide Covalent Organic Framework as DualActive-Center Cathode for High-Performance Lithium-Ion Batteries

被引:73
|
作者
Yao, Liyi [1 ]
Ma, Chao [2 ,3 ]
Sun, Libo [4 ]
Zhang, Daliang [5 ]
Chen, Yuze [1 ]
Jin, Enquan [1 ]
Song, Xiaowei [1 ]
Liang, Zhiqiang [1 ]
Wang, Kai-Xue [2 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Key Lab Mol Engn Chiral Drugs, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Coll Smart Energy, Shanghai 200240, Peoples R China
[4] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[5] Chongqing Univ, Multiscale Porous Mat Ctr, Inst Adv Interdisciplinary Studies, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
D O I
10.1021/jacs.2c10534
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyimide covalent organic framework (PI-COF) materials that can realize intrinsic redox reactions by changing the charge state of their electroactive sites are considered as emerging electrode materials for rechargeable devices. However, the highly crystalline PI-COFs with hierarchical porosity are less reported due to the rapid reaction between monomers and the poor reversibility of the polyimidization reaction. Here, we developed a water-assistant synthetic strategy to adjust the reaction rate of polyimidization, and PI-COF (COFTPDA-PMDA) with kgm topology consisting of dual active centers of N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA) and pyromellitic dianhydride (PMDA) ligands was successfully synthesized with high crystallinity and porosity. The COFTPDA-PMDA possesses hierarchical micro-/mesoporous channels with the largest surface area (2669 m2/g) in PI-COFs, which can promote the Li+ ions and bulky bis(trifluoromethanesulfonyl)imide (TFSI-) ions in organic electrolyte to sufficiently interact with the dual active sites on COF skeleton to increase the specific capacity of cathode materials. As a cathode material for lithium-ion batteries, COFTPDA-PMDA@50%CNT which integrated high surface area and dual active center of COFTPDA-PMDA with carbon nanotubes via p-p interactions gave a high initial charge capacity of 233 mAh/g (0.5 A/g) and maintains at 80 mAh/g even at a high current density of 5.0 A/g after 1800 cycles.
引用
收藏
页码:23534 / 23542
页数:9
相关论文
共 50 条
  • [41] Building a high-performance organic cathode material containing electron-withdrawing groups for lithium-ion batteries
    Shen, Daozhen
    Chen, Xiaojuan
    Chen, Chen
    Yang, Baozhu
    Jiang, Qingyan
    Su, Lixin
    Zhang, Hanping
    Liu, Hong-Jiang
    Liu, Qi
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [42] Fabrication of porous polyimide as cathode for high performance lithium-ion battery
    Liu, Xianyu
    Xie, Mingxun
    Wei, Yunxia
    Guo, Yongliang
    Liu, Zheng
    CHEMICAL COMMUNICATIONS, 2023, 59 (92) : 13743 - 13746
  • [43] Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries
    Peiyuan Guan
    Lu Zhou
    Zhenlu Yu
    Yuandong Sun
    Yunjian Liu
    Feixiang Wu
    Yifeng Jiang
    Dewei Chu
    Journal of Energy Chemistry , 2020, (04) : 220 - 235
  • [44] Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries
    Guan, Peiyuan
    Zhou, Lu
    Yu, Zhenlu
    Sun, Yuandong
    Liu, Yunjian
    Wu, Feixiang
    Jiang, Yifeng
    Chu, Dewei
    JOURNAL OF ENERGY CHEMISTRY, 2020, 43 : 220 - 235
  • [45] High-performance lithium-ion batteries based on polymer/graphene hybrid cathode material
    Yang Zhao
    Minghan Ni
    Nuo Xu
    Chenxi Li
    Yanfeng Ma
    Hongtao Zhang
    Yongsheng Chen
    Science China Chemistry, 2023, 66 : 2683 - 2689
  • [46] High-performance lithium-ion batteries based on polymer/graphene hybrid cathode material
    Yang Zhao
    Minghan Ni
    Nuo Xu
    Chenxi Li
    Yanfeng Ma
    Hongtao Zhang
    Yongsheng Chen
    Science China(Chemistry), 2023, 66 (09) : 2683 - 2689
  • [47] Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries
    Yang, Luyi
    Yang, Kai
    Zheng, Jiaxin
    Xu, Kang
    Amine, Khalil
    Pan, Feng
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (14) : 4667 - 4680
  • [48] High-performance lithium-ion batteries based on polymer/graphene hybrid cathode material
    Zhao, Yang
    Ni, Minghan
    Xu, Nuo
    Li, Chenxi
    Ma, Yanfeng
    Zhang, Hongtao
    Chen, Yongsheng
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (09) : 2683 - 2689
  • [49] High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries
    Chen, Jia-Jia
    Symes, Mark D.
    Fan, Shao-Cong
    Zheng, Ming-Sen
    Miras, Haralampos N.
    Dong, Quan-Feng
    Cronin, Leroy
    ADVANCED MATERIALS, 2015, 27 (31) : 4649 - 4654
  • [50] Crystallinity tuning of LCNO/graphene nanocomposite cathode for high-performance lithium-ion batteries
    Haider, Adawiya J.
    Chahrour, Khaled M.
    Addie, Ali J.
    Abdullah, Ahmed Q.
    Jubu, Peverga R.
    AL-Saedi, Safaa I.
    Naje, Asama N.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 300