A stabilizer free weak Galerkin finite element method for parabolic equation

被引:37
作者
Al-Taweel, Ahmed [1 ,2 ]
Hussain, Saqib [3 ]
Wang, Xiaoshen [1 ]
机构
[1] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[2] Univ Al Qadisiyah, Dept Math, Al Diwaniyah, Iraq
[3] Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
关键词
Stabilizer free; Weak Galerkin finite element methods; Weak gradient; Parabolic problem; Error estimates; TIME;
D O I
10.1016/j.cam.2020.113373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a stabilizer free weak Galerkin (SFWG) finite element method for a parabolic partial differential equation is proposed. The goal of using the SFWG method is to make the numerical implementation easier and more efficient. The optimal rate of convergence is derived in both H-1 and L-2 norms. Numerical experiments are performed to verify the theoretical results. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 25 条
[1]   A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method [J].
Al-Taweel, Ahmed ;
Wang, Xiaoshen .
APPLIED NUMERICAL MATHEMATICS, 2020, 150 :444-451
[2]   A P0-P0 weak Galerkin finite element method for solving singularly perturbed reaction-diffusion problems [J].
Al-Taweel, Ahmed ;
Hussain, Saqib ;
Wang, Xiaoshen ;
Jones, Brian .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (02) :213-227
[3]   TWO FAMILIES OF H(div) MIXED FINITE ELEMENTS ON QUADRILATERALS OF MINIMAL DIMENSION [J].
Arbogast, Todd ;
Correa, Maicon R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) :3332-3356
[4]  
Brenner SC, 2008, ELECTRON T NUMER ANA, V30, P107
[5]   A FINITE VOLUME METHOD FOR SOLVING PARABOLIC EQUATIONS ON LOGICALLY CARTESIAN CURVED SURFACE MESHES [J].
Calhoun, Donna A. ;
Helzel, Christiane .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4066-4099
[6]   A Weak Galerkin Finite Element Method for Elliptic Interface Problems with Polynomial Reduction [J].
Deka, Bhupen .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (03) :655-672
[7]   ON L2 ERROR ESTIMATE FOR WEAK GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS [J].
Gao, Fuzheng ;
Mu, Lin .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) :195-204
[8]   A modified weak Galerkin finite element method for a class of parabolic problems [J].
Gao, Fuzheng ;
Wang, Xiaoshen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 :1-19
[9]   A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE SECOND ORDER ELLIPTIC PROBLEMS WITH MIXED BOUNDARY CONDITIONS [J].
Hussain, Saqib ;
Malluwawadu, Nolisa ;
Zhu, Peng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05) :1452-1463
[10]  
Li R., 1980, Numerical solution of differential equations