Fermionic modular categories and the 16-fold way

被引:64
作者
Bruillard, Paul [1 ]
Galindo, Cesar [2 ]
Hagge, Tobias [1 ]
Ng, Siu-Hung [3 ]
Plavnik, Julia Yael [4 ]
Rowell, Eric C. [4 ]
Wang, Zhenghan [5 ,6 ]
机构
[1] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA
[2] Univ Los Andes, Dept Matemat, Bogota, Colombia
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[5] Univ Calif Santa Barbara, Microsoft Res Stn Q, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4982048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study spin and super-modular categories systematically as inspired by fermionic topological phases of matter, which are always fermion parity enriched and modelled by spin topological quantum field theories at low energy. We formulate a 16-fold way conjecture for the minimal modular extensions of super-modular categories to spin modular categories, which is a categorical formulation of gauging the fermion parity. We investigate general properties of super-modular categories such as fermions in twisted Drinfeld doubles, Verlinde formulas for naive quotients, and explicit extensions of PSU(2)(4m+2) with an eye towards a classification of the low-rank cases. Published by AIP Publishing.
引用
收藏
页数:31
相关论文
共 41 条
[1]  
Bakalov B., 2001, U LECT SERIES, V21
[2]  
Barkeshli M., 2014, SYMMETRY DEFECTS GAU
[3]  
Belov D., 2015, CLASSIFICATION ABELI
[4]   A spin decomposition of the Verlinde formulas for type A modular categories [J].
Blanchet, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :1-28
[5]  
Bonderson P. H., 2007, THESIS
[6]  
Cartan Henri, 1999, PRINCETON LANDMARKS
[7]  
Cheng M., 2014, COMMUNICATION
[8]   On Gauging Symmetry of Modular Categories [J].
Cui, Shawn X. ;
Galindo, Cesar ;
Plavnik, Julia Yael ;
Wang, Zhenghan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (03) :1043-1064
[9]   The Witt group of non-degenerate braided fusion categories [J].
Davydov, Alexei ;
Muger, Michael ;
Nikshych, Dmitri ;
Ostrik, Victor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 :135-177
[10]   On the structure of the Witt group of braided fusion categories [J].
Davydov, Alexei ;
Nikshych, Dmitri ;
Ostrik, Victor .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (01) :237-269