Multigrid methods in science and engineering

被引:19
作者
Douglas, CC
机构
[1] IBM CORP, TJ WATSON RES CTR, ARMONK, NY 10504 USA
[2] YALE UNIV, DEPT COMP SCI, NEW HAVEN, CT 06520 USA
来源
IEEE COMPUTATIONAL SCIENCE & ENGINEERING | 1996年 / 3卷 / 04期
关键词
D O I
10.1109/99.556513
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By combining computation from several scales of mesh fineness, multigrid and multilevel methods can improve speed and accuracy in a wide variety of science and engineering applications. This tutorial sketches the history of the techniques, explains the basics, and gives painters to the literature and current research.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 35 条
[1]  
Astrakhantsev G. P., 1971, Z VYCISL MAT MAT FIZ, V11, P439
[2]  
AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
[3]  
AXELSSON O, 1996, AMLI 96 P C ALG MULT
[4]  
BAKHVALOV NS, 1966, ZH VYCH MAT MAT FIZ, V6, P861
[5]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[6]   SHARP ESTIMATES FOR MULTIGRID RATES OF CONVERGENCE WITH GENERAL SMOOTHING AND ACCELERATION [J].
BANK, RE ;
DOUGLAS, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :617-633
[7]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[8]  
BANK RE, 1982, MATH COMPUT, V39, P453, DOI 10.1090/S0025-5718-1982-0669639-X
[9]  
Bramble J. H., 1993, PITMAN RES NOTES MAT, V294
[10]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P23, DOI 10.1090/S0025-5718-1991-1079008-4