Pattern formation in a general glycolysis reaction-diffusion system

被引:33
作者
Zhou, Jun [1 ]
Shi, Junping [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
reaction-diffusion system; glycolysis model; stability; Hopf bifurcation; steady-state bifurcation; non-constant positive solutions; GRAY-SCOTT MODEL; LENGYEL-EPSTEIN SYSTEM; STEADY-STATE SOLUTIONS; PREDATOR-PREY SYSTEM; SELKOV MODEL; TURING PATTERNS; BIFURCATION ANALYSIS; SCHNAKENBERG MODEL; GLOBAL BIFURCATION; BRUSSELATOR SYSTEM;
D O I
10.1093/imamat/hxv013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general reaction-diffusion system modelling glycolysis is investigated. The parameter regions for the stability and instability of the unique constant steady-state solution is derived, and the existence of time-periodic orbits and non-constant steady-state solutions are proved by the bifurcation method and Leray-Schauder degree theory. The effect of various parameters on the existence and non-existence of spatiotemporal patterns is analysed.
引用
收藏
页码:1703 / 1738
页数:36
相关论文
共 61 条
[1]  
[Anonymous], 1976, PERTURBATION THEORY
[2]  
[Anonymous], 1971, J. Funct. Anal., DOI [DOI 10.1093/imamat/hxv006, 10.1016/0022-1236(71)90030-9]
[3]  
[Anonymous], 1981, THEORY APPL HOPF BIF, DOI DOI 10.1090/CONM/445
[4]  
[Anonymous], 2004, J DYNAM DIFFERENTIAL
[5]  
ASHKENAZI M, 1978, J MATH BIOL, V5, P305
[6]  
AUCHMUTY JFG, 1975, B MATH BIOL, V37, P323, DOI 10.1007/BF02459519
[7]  
BHARGAVA SC, 1980, B MATH BIOL, V42, P829
[8]   GLOBAL BIFURCATION IN THE BRUSSELATOR SYSTEM [J].
BROWN, KJ ;
DAVIDSON, FA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (12) :1713-1725
[9]   Instabilities and patterns in coupled reaction-diffusion layers [J].
Catlla, Anne J. ;
McNamara, Amelia ;
Topaz, Chad M. .
PHYSICAL REVIEW E, 2012, 85 (02)
[10]  
Davidson FA, 2000, P ROY SOC EDINB A, V130, P507