Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing

被引:93
作者
Bleu, Yannick [1 ]
Bourquard, Florent [1 ]
Loir, Anne-Sophie [1 ]
Barnier, Vincent [2 ]
Garrelie, Florence [1 ]
Donnet, Christophe [1 ]
机构
[1] Univ Lyon, Univ Jean Monnet St Etienne, CNRS, Inst Opt,Grad Sch,Lab Hubert Curien,UMR 5516, St Etienne, France
[2] Univ Lyon, Mines St Etienne, CNRS, UMR 5307 LGF,Ctr SMS, F-42023 St Etienne, France
关键词
graphene; nickel silicide; pulsed laser deposition; rapid thermal annealing; substrate effect; FEW-LAYER GRAPHENE; PULSED-LASER DEPOSITION; EPITAXIAL GRAPHENE; CHEMICAL-REDUCTION; SINGLE-LAYER; SPECTROSCOPY; SPECTRA; GROWTH; CONDUCTIVITY; SURFACE;
D O I
10.1002/jrs.5683
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We report the results of a comparative investigation of graphene films prepared on Si(100) and fused silica (SiO2) combining pulsed laser deposition and rapid thermal annealing using Ni catalyst. The effect of modifying the substrate and/or growth temperature (600-1,000 degrees C) of graphene synthesis was investigated by Raman microspectroscopy mapping. Graphene grown on Si(100) was multilayered, and various nickel silicide phases had formed underneath, revealing dependence on the growth temperature. Films prepared on SiO2 mainly comprised bilayered and trilayered graphene, with no traces of nickel silicide. Analysis of Raman D, G, and 2D peak intensities and positions showed that modifying the growth temperature had different effects when a Si(100) or a SiO2 substrate is used. These findings advance our understanding of how different combinations of substrate and thermal processing parameters affect graphene synthesis from solid carbon source using nickel as a catalyst. This knowledge will enable better control of the properties of graphene film (defects, number of layers, etc.) and will have a high potential impact on the design of graphene-based devices for scientific or industrial applications.
引用
收藏
页码:1630 / 1641
页数:12
相关论文
共 75 条
[1]   Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature [J].
Abd Elhamid, Abd Elhamid M. ;
Hafez, Mohamed A. ;
Aboulfotouh, Abdelnaser M. ;
Azzouz, Iftitan M. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (02)
[2]   Raman analysis of strained graphene grown on dewetted cobalt [J].
Amato, Giampiero ;
Beccaria, Federico ;
Landini, Elisabetta ;
Vittone, Ettore .
JOURNAL OF RAMAN SPECTROSCOPY, 2019, 50 (04) :499-508
[3]   Growth of large-area graphene films from metal-carbon melts [J].
Amini, Shaahin ;
Garay, Javier ;
Liu, Guanxiong ;
Balandin, Alexander A. ;
Abbaschian, Reza .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[4]   A facile method for the synthesis of transfer-free graphene from co-deposited nickel-carbon layers [J].
An, Sehoon ;
Lee, Geun-Hyuk ;
Jang, Seong Woo ;
Hwang, Sehoon ;
Lim, Sang Ho ;
Han, Seunghee .
CARBON, 2016, 109 :154-162
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast [J].
Bayle, Maxime ;
Reckinger, Nicolas ;
Felten, Alexandre ;
Landois, Perine ;
Lancry, Ophelie ;
Dutertre, Bertrand ;
Colomer, Jean-Francois ;
Zahab, Ahmed-Azmi ;
Henrard, Luc ;
Sauvajol, Jean-Louis ;
Paillet, Matthieu .
JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (01) :36-45
[7]   In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon [J].
Bhaskaran, M. ;
Sriram, S. ;
Perova, T. S. ;
Ermakov, V. ;
Thorogood, G. J. ;
Short, K. T. ;
Holland, A. S. .
MICRON, 2009, 40 (01) :89-93
[8]   Review of Graphene Growth From a Solid Carbon Source by Pulsed Laser Deposition (PLD) [J].
Bleu, Yannick ;
Bourquard, Florent ;
Tite, Teddy ;
Loir, Anne-Sophie ;
Maddi, Chirandjeevi ;
Donnet, Christophe ;
Garrelie, Florence .
FRONTIERS IN CHEMISTRY, 2018, 6
[9]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[10]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]