Mean field games. II - Finite horizon and optimal control.

被引:602
作者
Lasry, Jean-Michel
Lions, Pierre-Louis
机构
[1] Univ Paris 09, Inst France, F-75775 Paris 16, France
[2] Coll France, F-75005 Paris, France
[3] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
关键词
D O I
10.1016/j.crma.2006.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue in this Note our study of the notion of mean field games that we introduced in a previous Note. We consider here the case of Nash equilibria for stochastic control type problems in finite horizon. We present general existence and uniqueness results for the partial differential equations systems that we introduce. We also give a possible interpretation of these systems in term of optimal control.
引用
收藏
页码:679 / 684
页数:6
相关论文
共 9 条
[1]   MARKETS WITH A CONTINUUM OF TRADERS [J].
AUMANN, RJ .
ECONOMETRICA, 1964, 32 (1-2) :39-50
[2]  
BENSOUSSAN A, 1984, J REINE ANGEW MATH, V350, P23
[3]   ERGODIC BELLMAN SYSTEMS FOR STOCHASTIC GAMES IN ARBITRARY DIMENSION [J].
BENSOUSSAN, A ;
FREHSE, J .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1935) :65-77
[4]  
Carmona G, 2004, NASH EQUILIBRIA GAME
[5]   First order asymptotics of matrix integrals; A rigorous approach towards the understanding of matrix models [J].
Guionnet, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 244 (03) :527-569
[6]   Large deviations asymptotics for spherical integrals [J].
Guionnet, A ;
Zeitouni, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :461-515
[7]   Mean field games. I - The stationary case. [J].
Lasry, Jean-Michel ;
Lions, Pierre-Louis .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (09) :619-625
[8]  
LASRY JM, 2006, J MATH PURES APL
[9]  
Lions P.L., 1998, MATH TOPICS FLUID ME, V1-2