The relative error in the Pruess method for Sturm-Liouville problems

被引:1
作者
Kosowski, P [1 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
eigenvalue problem; Sturm-Liouville operator; Pruess method; absolute and relative errors;
D O I
10.1016/S0024-3795(99)00101-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Pruess method to solve the Sturm-Liouville eigenvalue problem. Superconvergence of the method for the relative error of an eigenvalue is examined with respect to its index. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 33 条
[1]   ON THE CORRECTION OF FINITE-DIFFERENCE EIGENVALUE APPROXIMATIONS FOR STURM-LIOUVILLE PROBLEMS WITH GENERAL BOUNDARY-CONDITIONS [J].
ANDERSSEN, RS ;
de Hoog, FR .
BIT NUMERICAL MATHEMATICS, 1984, 24 (04) :401-412
[2]   ASYMPTOTIC STRUCTURE IN TORSIONAL FREE OSCILLATIONS OF EARTH .1. OVERTONE STRUCTURE [J].
ANDERSSEN, RS ;
CLEARY, JR .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1974, 39 (02) :241-268
[3]   CORRECTION OF FINITE-ELEMENT ESTIMATES FOR STRUM-LIOUVILLE EIGENVALUES [J].
ANDREW, AL ;
PAINE, JW .
NUMERISCHE MATHEMATIK, 1986, 50 (02) :205-215
[4]   CORRECTION OF NUMEROVS EIGENVALUE ESTIMATES [J].
ANDREW, AL ;
PAINE, JW .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :289-300
[5]  
ANDREW AL, 1994, ANNALS OF NUMERICAL MATHEMATICS, VOL I, NOS 1-4 (1994), P41
[6]  
[Anonymous], DEMONSTRATIO MATH
[7]  
Birkhoff G., 1966, SIAM J NUMER ANAL, V3, P188
[8]  
Birkhoff G., 1962, ORDINARY DIFFERENTIA
[9]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .3. EIGENVALUE PROBLEMS [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1968, 12 (02) :120-&
[10]  
COURANT R, 1953, METHODS MATH PHYSICS, V1