Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method

被引:36
|
作者
Ganji, D. D. [1 ]
Gorji, M. [1 ]
Soleimani, S. [1 ]
Esmaeilpour, M. [1 ]
机构
[1] Univ Mazandaran, Dept Mech Engn, Babol Sar, Iran
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A | 2009年 / 10卷 / 09期
关键词
Energy Balance Method (EBM); Cubic-quintic Duffing equation; Oscillator; VARIATIONAL ITERATION METHOD; HOMOTOPY-PERTURBATION; POINCARE METHODS; LIMIT-CYCLES; EXPANSION;
D O I
10.1631/jzus.A0820651
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, He's Energy Balance Method (EBM) was applied to solve strong nonlinear Duffing oscillators with cubic-quintic nonlinear restoring force. The complete EBM solution procedure of the cubic-quintic Duffing oscillator equation is presented. For illustration of effectiveness and convenience of the EBM, different cases of cubic-quintic Duffing oscillator with different parameters of alpha, beta and gamma were compared with the exact solution. We found that the solutions were valid for small as well as large amplitudes of oscillation. The results show that the EBM is very convenient and precise, so it can be widely applicable in engineering and other sciences.
引用
收藏
页码:1263 / 1268
页数:6
相关论文
共 50 条
  • [1] Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method
    D.D.GANJI
    M.GORJI
    S.SOLEIMANI
    M.ESMAEILPOUR
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (09) : 1263 - 1268
  • [2] Solution of nonlinear cubic-quintic Duffing oscillators using He’s Energy Balance Method
    D. D. Ganji
    M. Gorji
    S. Soleimani
    M. Esmaeilpour
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1263 - 1268
  • [3] Solution of Cubic-Quintic Duffing Oscillators using Harmonic Balance Method
    Hosen, M. A.
    Chowdhury, M. S. H.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 181 - 192
  • [4] Gamma function method for the nonlinear cubic-quintic Duffing oscillators
    Wang, Kang-Jia
    Wang, Guo-Dong
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 216 - 222
  • [5] A PERTURBATIVE ANALYSIS OF NONLINEAR CUBIC-QUINTIC DUFFING OSCILLATORS
    Sayevand, Khosro
    Baleanu, Dumitru
    Fardi, Mojtaba
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (03): : 228 - 234
  • [6] Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
    Karahan, M. M. Fatih
    Pakdemirli, Mehmet
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (01): : 59 - 69
  • [7] New Approximate Solutions for the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
    Karahan, M. M. Fatih
    Pakdemirli, Mehmet
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [8] Exact solution of the cubic-quintic Duffing oscillator
    Elias-Zuniga, Alex
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (04) : 2574 - 2579
  • [9] Analytical Solution to the Damped Cubic-Quintic Duffing Equation
    Salas, Alvaro H.
    El-Tantawy, S. A.
    Castillo, Jairo H.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 425 - 430
  • [10] ANALYTICAL SOLUTION OF THE FRACTAL CUBIC-QUINTIC DUFFING EQUATION
    Elias-Zuniga, Alex
    Manuel Palacios-Pineda, Luis
    Jimenez-Cedeno, Isaac H.
    Martinez-Romero, Oscar
    Olvera-Trejo, Daniel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)