Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation

被引:43
作者
Liu, Wenhao [1 ]
Zhang, Yufeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
(3+1)-dimensional Hirota bilinear equation; Bilinear form; Rogue waves; SOLITARY WAVES; BREATHER WAVES;
D O I
10.1016/j.aml.2019.05.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we considered the multiple rogue wave solutions of a (3+1)-dimensional Hirota bilinear equation by using a symbolic computation approach. Based on the bilinear form of this equation, the first-order rogue waves, the second order rogue waves and the third-order rogue waves are presented. Moreover, some basic properties of multiple rogue waves and their collision structures are explained by drawing the three dimensional plot. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:184 / 190
页数:7
相关论文
共 22 条
[1]  
Banerjee S., 2015, APPL CHAOS NONLINEAR, V4
[2]  
CLARKSON P. A., 2017, T MATH APPL, V1, p1?26, DOI [10.1093/imatrm/tnx003, DOI 10.1093/IMATRM/TNX003]
[3]   The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions [J].
Demontis, F. ;
Prinari, B. ;
van der Mee, C. ;
Vitale, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[4]   Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation [J].
Dong, Min-Jie ;
Tian, Shou-Fu ;
Yan, Xue-Wei ;
Zou, Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) :957-964
[5]  
Dysthe K, 2008, ANNU REV FLUID MECH, V40, P287, DOI [10.1146/annurev.fluid.40.111406.102203, 10.1146/annurev.fluid.40.111406.102]
[6]   Rogue waves in superfluid helium [J].
Efimov, V. B. ;
Ganshin, A. N. ;
Kolmakov, G. V. ;
McClintock, P. V. E. ;
Mezhov-Deglin, L. P. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :181-193
[7]   NONLINEAR OSCILLATIONS IN CHEMICAL AND BIOLOGICAL-SYSTEMS [J].
EPSTEIN, IR .
PHYSICA D, 1991, 51 (1-3) :152-160
[8]   Mathematical modeling of time fractional reaction-diffusion systems [J].
Gafiychuk, V. ;
Datsko, B. ;
Meleshko, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) :215-225
[9]   Resonant behavior of multiple wave solutions to a Hirota bilinear equation [J].
Gao, Li-Na ;
Zhao, Xue-Ying ;
Zi, Yao-Yao ;
Yu, Jun ;
Lu, Xing .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) :1225-1229
[10]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)