Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials

被引:28
|
作者
Ambrosetti, A. [1 ]
Ruiz, D. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1017/S0308210500004789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of radial solutions of -epsilon(2) Delta u + V(vertical bar x vertical bar)u = u(p), x is an element of R-n, u is an element of W-1,W-2(R-n), u > 0, concentrating on a sphere for potentials which might be zero and might decay to zero at infinity. The proofs use a perturbation technique in a variational setting, through a Lyapunov-Schmidt reduction.
引用
收藏
页码:889 / 907
页数:19
相关论文
共 50 条
  • [41] Existence of normalized solutions for nonlinear fractional Schrodinger equations with trapping potentials
    Du, Miao
    Tian, Lixin
    Wang, Jun
    Zhang, Fubao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) : 617 - 653
  • [42] Existence and Multiplicity of Nontrivial Solutions for Nonlinear Schrodinger Equations with Unbounded Potentials
    Chen, Jianhua
    Huang, Xianjiu
    Cheng, Bitao
    Luo, Huxiao
    FILOMAT, 2018, 32 (07) : 2465 - 2481
  • [43] GROUND STATE SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH ASYMPTOTICALLY PERIODIC POTENTIALS
    Guo, Jianmin
    Kang, Shugui
    Ma, Shiwang
    Zhang, Guang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1663 - 1677
  • [44] Infinitely many solutions for the nonlinear Schrodinger equations with magnetic potentials in RN
    Liu, Weiming
    Wang, Chunhua
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [45] Radial solutions of a biharmonic equation with vanishing or singular radial potentials
    Badiale, Marino
    Greco, Stefano
    Rolando, Sergio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 : 97 - 122
  • [46] Three solutions for a fractional Schrodinger equation with vanishing potentials
    Yang, Zhipeng
    Zhao, Fukun
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 90 - 95
  • [47] Existence of solutions for a quasilinear Schrodinger equation with vanishing potentials
    Aires, Jose F. L.
    Souto, Marco A. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 924 - 946
  • [48] Nonlinear Schrodinger equations with exceptional potentials
    Naumkin, Ivan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) : 4575 - 4631
  • [49] The solutions for nonlinear Schrodinger equations
    Ru, Shaolei
    Chen, Jiecheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 117 - 129
  • [50] Ground state solutions for the nonlinear Schrodinger-Poisson systems with sum of periodic and vanishing potentials
    Xie, Weihong
    Chen, Haibo
    Shi, Hongxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 144 - 158