Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials

被引:28
作者
Ambrosetti, A. [1 ]
Ruiz, D. [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1017/S0308210500004789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of radial solutions of -epsilon(2) Delta u + V(vertical bar x vertical bar)u = u(p), x is an element of R-n, u is an element of W-1,W-2(R-n), u > 0, concentrating on a sphere for potentials which might be zero and might decay to zero at infinity. The proofs use a perturbation technique in a variational setting, through a Lyapunov-Schmidt reduction.
引用
收藏
页码:889 / 907
页数:19
相关论文
共 13 条
[1]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[4]  
Ambrosetti A., 2006, PROGR MATH SERIES, V240
[5]  
AMBROSETTI A, IN PRESS J ANAL MATH
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   Standing waves with a critical frequency for nonlinear Schrodinger equations, II [J].
Byeon, J ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :207-219
[8]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[9]  
Lebedev N. N., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]
[10]  
LI YY, 1997, ADV DIFFERENTIAL EQU, V2, P955