On the packing measure of the Sierpinski gasket

被引:4
作者
Llorente, Marta [1 ]
Eugenia Mera, M. [2 ]
Moran, Manuel [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Anal Econ Econ Cuantitat, Campus Cantoblanco, E-28049 Madrid, Spain
[2] Univ Complutense Madrid, Dept Anal Econ & Econ Cuantitat, Campus Somosaguas, Madrid 28223, Spain
[3] Univ Complutense Madrid, IMI Inst Interdisciplinary Math, E-28040 Madrid, Spain
关键词
Sierpinski gasket; packing measure; computability of fractal measures; algorithm; self-similar sets; CENTERED HAUSDORFF MEASURES; SELF-SIMILAR SETS; COMPUTABILITY; EQUATIONS;
D O I
10.1088/1361-6544/aab31c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the s-dimensional packing measure P-s(S) of the Sierpinski gasket S, where s = log 3/log 2 is the similarity dimension of S, satisfies 1.6677 <= P-s(S) <= 1.6713. The formula presented in theorem 6 enables the achievement of the above measure bounds for this non-totally disconnected set as it shows that the symmetries of the Sierpinski gasket can be exploited to simplify the density characterization of P-s obtained in Moran (2005 Nonlinearity 18 559-70) for self-similar sets satisfying the so-called open set condition. Thanks to the reduction obtained in theorem 6 we are able to handle the problem of computability of P-s(S) with a suitable algorithm.
引用
收藏
页码:2571 / 2589
页数:19
相关论文
共 45 条
[1]   SOME PROPERTIES OF THE SPECTRUM OF THE SIERPINSKI GASKET IN A MAGNETIC-FIELD [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1984, 29 (10) :5504-5508
[2]   Packing dimension and measure of homogeneous Cantor sets [J].
Baek, H. K. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) :443-448
[3]   Slicing the Sierpinski gasket [J].
Barany, Balazs ;
Ferguson, Andrew ;
Simon, Karoly .
NONLINEARITY, 2012, 25 (06) :1753-1770
[4]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[5]   Curvature-direction measures of self-similar sets [J].
Bohl, Tilman Johannes ;
Zaehle, Martina .
GEOMETRIAE DEDICATA, 2013, 167 (01) :215-231
[6]   Fractal differential equations on the Sierpinski gasket [J].
Dalrymple, K ;
Strichartz, RS ;
Vinson, JP .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) :203-284
[7]  
Falconer K., 1997, Techniques in fractal geometry
[8]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573
[9]   Some relations between packing premeasure and packing measure [J].
Feng, DJ ;
Hua, S ;
Wen, ZY .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :665-670
[10]   Exact packing measure of linear Cantor sets [J].
Feng, DJ .
MATHEMATISCHE NACHRICHTEN, 2003, 248 :102-109