Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term

被引:94
作者
Aassila, M
Cavalcanti, MM
Cavalcanti, VND
机构
[1] Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
D O I
10.1007/s005260100096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear model of the wave equation y(tt) - Deltay + f(0) (dely) = 0 subject to the following nonlinear boundary conditions partial derivativey/partial derivativenu + g(y(t)) = F-o(t) h(t - tau)f1(y(tau)) dtau. We show existence of solutions by means of Faedo-Galerkin method and the uniform decay is obtained by using the multiplier technique.
引用
收藏
页码:155 / 180
页数:26
相关论文
共 17 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]   A note on the boundary stabilization of a compactly coupled system of wave equations [J].
Aassila, M .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :19-24
[3]  
CAVALCANTI M. M., 2001, Differential and Integral Equations, V14, P85
[4]   Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Prates, JS ;
Soriano, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (03) :281-294
[5]  
CAVALCANTI MM, 1998, ELECT J DIFFER EQU, P1
[6]  
CIPOLATTI R., 1996, DIFFERENTIAL INTEGRA, V9, P137
[7]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[8]  
Dafermos CM, 1979, COMMUN PART DIFF EQ, V4, P219
[9]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308