Universal fault-tolerant measurement-based quantum computation

被引:40
作者
Brown, Benjamin J. [1 ]
Roberts, Sam [1 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
澳大利亚研究理事会;
关键词
ERROR-CORRECTION; CODES; THRESHOLD; ANYONS; STATE;
D O I
10.1103/PhysRevResearch.2.033305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-based model for universal quantum computation that simulates the braiding and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our framework gives an explicit way of producing fault-tolerant models of universal quantum computation with linear optics using any protocol developed using the stabilizer formalism. Given the remarkable fault-tolerant properties that Majorana modes promise, the main example we present offers a robust and resource-efficient proposal for photonic quantum computation.
引用
收藏
页数:27
相关论文
共 121 条
[1]   Programmable four-photon graph states on a silicon chip [J].
Adcock, Jeremy C. ;
Vigliar, Caterina ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Thompson, Mark G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Exponential protection of zero modes in Majorana islands [J].
Albrecht, S. M. ;
Higginbotham, A. P. ;
Madsen, M. ;
Kuemmeth, F. ;
Jespersen, T. S. ;
Nygard, J. ;
Krogstrup, P. ;
Marcus, C. M. .
NATURE, 2016, 531 (7593) :206-+
[3]   Simple proof of fault tolerance in the graph-state model [J].
Aliferis, P ;
Leung, DW .
PHYSICAL REVIEW A, 2006, 73 (03)
[4]   Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes [J].
Anderson, Jonas T. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[5]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[6]  
Bacon D., 2006, ARXIVQUANTPH0610088
[7]   Sparse Quantum Codes From Quantum Circuits [J].
Bacon, Dave ;
Flammia, Steven T. ;
Harrow, Aram W. ;
Shi, Jonathan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) :2464-2479
[8]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[9]   Demonstrating elements of measurement-based quantum error correction [J].
Barz, Stefanie ;
Vasconcelos, Rui ;
Greganti, Chiara ;
Zwerger, Michael ;
Duer, Wolfgang ;
Briegel, Hans J. ;
Walther, Philip .
PHYSICAL REVIEW A, 2014, 90 (04)
[10]   Decoding schemes for foliated sparse quantum error-correcting codes [J].
Bolt, A. ;
Poulin, D. ;
Stace, T. M. .
PHYSICAL REVIEW A, 2018, 98 (06)