CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

被引:873
作者
Burdyny, Thomas [1 ]
Smith, Wilson A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Mat Energy Convers & Storage, NL-2629 HZ Delft, Netherlands
基金
欧洲研究理事会;
关键词
SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE REDUCTION; THEORETICAL INSIGHTS; MECHANISTIC INSIGHTS; HYDROGEN EVOLUTION; HIGH-EFFICIENCY; ELECTROREDUCTION; ELECTROLYSIS; CONVERSION; ETHYLENE;
D O I
10.1039/c8ee03134g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 reduction has the dual-promise of neutralizing carbon emissions in the near future, while providing a long-term pathway to create energy-dense chemicals and fuels from atmospheric CO2 . The field has advanced immensely in recent years, taking significant strides towards commercial realization. Catalyst innovations have played a pivotal role in these advances, with a steady stream of new catalysts providing gains in CO2 conversion efficiencies and selectivities of both C1 and C2 products. Comparatively few of these catalysts have been tested at commercially-relevant current densities (similar to 200 mA cm(-2)) due to transport limitations in traditional testing configurations and a research focus on fundamental catalyst kinetics, which are measured at substantially lower current densities. A catalyst's selectivity and activity, however, have been shown to be highly sensitive to the local reaction environment, which changes drastically as a function of reaction rate. As a consequence of this, the surface properties of many CO2 reduction catalysts risk being optimized for the wrong operating conditions. The goal of this perspective is to communicate the substantial impact of reaction rate on catalytic behaviour and the operation of gas-diffusion layers for the CO2 reduction reaction. In brief, this work motivates high current density catalyst testing as a necessary step to properly evaluate materials for electrochemical CO2 reduction, and to accelerate the technology toward its envisioned application of neutralizing CO2 emissions on a global scale.
引用
收藏
页码:1442 / 1453
页数:12
相关论文
共 98 条
[1]   Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction [J].
Ayemoba, Onagie ;
Cuesta, Angel .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) :27377-27382
[2]   Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry [J].
Burdyny, Thomas ;
Graham, Percival J. ;
Pang, Yuanjie ;
Cao-Thang Dinh ;
Liu, Min ;
Sargent, Edward H. ;
Sinton, David .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :4031-4040
[3]   High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media [J].
Cao-Thang Dinh ;
de Arquer, F. Pelayo Garcia ;
Sinton, David ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2018, 3 (11) :2835-2840
[4]  
Castillo A. D., 2014, AICHE J, V60, P3557
[5]   Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals [J].
Cave, Etosha R. ;
Shi, Chuan ;
Kuhl, Kendra P. ;
Hatsukade, Toni ;
Abram, David N. ;
Hahn, Christopher ;
Chan, Karen ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2018, 8 (04) :3035-3040
[6]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[7]   HIGH-RATE GAS-PHASE CO2 REDUCTION TO ETHYLENE AND METHANE USING GAS-DIFFUSION ELECTRODES [J].
COOK, RL ;
MACDUFF, RC ;
SAMMELLS, AF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (02) :607-608
[8]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[9]   Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature [J].
Delacourt, Charles ;
Ridgway, Paul L. ;
Kerr, John B. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B42-B49
[10]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787