Robust rendezvous for mobile autonomous agents via proximity graphs. in arbitrary dimensions

被引:479
作者
Cortes, Jorge [1 ]
Martinez, Sonia
Bullo, Francesco
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
cooperative control; distributed coordination algorithms; nondeterministic dynamical systems; proximity graphs; rendezvous; robustness;
D O I
10.1109/TAC.2006.878713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents coordination algorithms for networks of mobile autonomous agents. The objective of the proposed algorithms is to achieve rendezvous, that is, agreement over the location of the agents in the network. We provide analysis and design results for multiagent networks in arbitrary dimensions under weak requirements on the switching and failing communication topology. The novel correctness proof relies on proximity graphs and their properties and on a general LaSalle invariance principle for nondeterministic discrete-time dynamical systems.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 23 条
[1]   Distributed memoryless point convergence algorithm for mobile robots with limited visibility [J].
Ando, H ;
Oasa, Y ;
Suzuki, I ;
Yamashita, M .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1999, 15 (05) :818-828
[2]   Spatially-distributed coverage optimization and control with limited-range interactions [J].
Cortés, J ;
Martínez, S ;
Bullo, F .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (04) :691-719
[3]   Coverage control for mobile sensing networks [J].
Cortés, J ;
Martínez, S ;
Karatas, T ;
Bullo, F .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2004, 20 (02) :243-255
[4]  
Diestel R, 2000, GRADUATE TEXTS MATH
[5]  
EBERG M, 2000, COMPUTATIONAL GEOMET
[6]  
FAGNANI F, 2004, P MATH THEOR NETW SY
[7]  
Filippov A. F., DIFF EQUAT+, V18
[8]   Coordination of groups of mobile autonomous agents using nearest neighbor rules [J].
Jadbabaie, A ;
Lin, J ;
Morse, AS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (06) :988-1001
[9]   RELATIVE NEIGHBORHOOD GRAPHS AND THEIR RELATIVES [J].
JAROMCZYK, JW ;
TOUSSAINT, GT .
PROCEEDINGS OF THE IEEE, 1992, 80 (09) :1502-1517
[10]   Equilibria and steering laws for planar formations [J].
Justh, EW ;
Krishnaprasad, PS .
SYSTEMS & CONTROL LETTERS, 2004, 52 (01) :25-38