A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

被引:70
作者
Klaes, Christian [1 ]
Shi, Ying [1 ]
Kellis, Spencer [1 ]
Minxha, Juri [1 ]
Revechkis, Boris [1 ]
Andersen, Richard A. [1 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
基金
美国国家卫生研究院;
关键词
brain-machine interface; neural prosthesis; stimulation; macaque; microelectrodes; parietal cortex; somatosensory cortex; BRAIN-MACHINE INTERFACES; NEURAL-CONTROL; CORTEX; MOVEMENT; MOTOR; TACTILE; SIGNALS; HUMANS; PROSTHESIS; SPIKING;
D O I
10.1088/1741-2560/11/5/056024
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. Approach. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Main result. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Significance. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
Aaron Roy K, 2006, J Am Acad Orthop Surg, V14, pS198
[2]   A biocompatible titanium headpost for stabilizing behaving monkeys [J].
Adams, Daniel L. ;
Economides, John R. ;
Jocson, Cristina M. ;
Horton, Jonathan C. .
JOURNAL OF NEUROPHYSIOLOGY, 2007, 98 (02) :993-1001
[3]   HISTOPATHOLOGIC EVALUATION OF PROLONGED INTRACORTICAL ELECTRICAL-STIMULATION [J].
AGNEW, WF ;
YUEN, TGH ;
MCCREERY, DB ;
BULLARA, LA .
EXPERIMENTAL NEUROLOGY, 1986, 92 (01) :162-185
[4]   Behavioral Demonstration of a Somatosensory Neuroprosthesis [J].
Berg, J. A. ;
Dammann, J. F., III ;
Tenore, F. V. ;
Tabot, G. A. ;
Boback, J. L. ;
Manfredi, L. R. ;
Peterson, M. L. ;
Katyal, K. D. ;
Johannes, M. S. ;
Makhlin, A. ;
Wilcox, R. ;
Franklin, R. K. ;
Vogelstein, R. J. ;
Hatsopoulos, N. G. ;
Bensmaia, S. J. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (03) :500-507
[5]   AMPLITUDES OF BACKGROUND FAST ACTIVITY CHARACTERISTIC OF SPECIFIC BRAIN SITES [J].
BUCHWALD, JS ;
GROVER, FS .
JOURNAL OF NEUROPHYSIOLOGY, 1970, 33 (01) :148-&
[6]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[7]   The effect of chronic intracortical microstimulation on the electrode-tissue interface [J].
Chen, Kevin H. ;
Dammann, John F. ;
Boback, Jessica L. ;
Tenore, Francesco V. ;
Otto, Kevin J. ;
Gaunt, Robert A. ;
Bensmaia, Sliman J. .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (02)
[8]   Neural stimulation and recording electrodes [J].
Cogan, Stuart F. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 :275-309
[9]   A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces [J].
Cunningham, John P. ;
Nuyujukian, Paul ;
Gilja, Vikash ;
Chestek, Cindy A. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 105 (04) :1932-1949
[10]   Direct neural sensory feedback and control of a prosthetic arm [J].
Dhillon, GS ;
Horch, KW .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2005, 13 (04) :468-472