Mechanical, thermal and electrical properties of monolayer and bilayer graded Al/SiC/rice husk ash (RHA) composite

被引:37
作者
Bahrami, A. [1 ,2 ]
Soltani, N. [1 ,2 ]
Soltani, S. [3 ]
Pech-Canul, M. I. [1 ]
Gonzalez, L. A. [1 ]
Gutierrez, C. A. [1 ]
Moeller, A. [4 ]
Tapp, J. [4 ]
Gurlo, A. [5 ]
机构
[1] IPN Unidad Saltillo, Ctr Invest & Estudios Avanzados, Ave Ind Met 1062,Parque Ind Saltillo Ramos Arizpe, Ramos Arizpe 25900, Coahuila, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Mat, Ciudad Univ, Mexico City 04510, DF, Mexico
[3] KN Toosi Univ Technol, Fac Elect & Comp Engn, Tehran 16314, Iran
[4] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
[5] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Fachgebiet Keram Werkstoffe, Chair Adv Ceram Mat, Hardenbergstr 40, D-10623 Berlin, Germany
关键词
Pressureless infiltration; Bending strength; Coefficient of thermal expansion; Electrical resistivity; Thermal diffusivity; METAL-MATRIX COMPOSITES; RICE-HUSK; ALUMINUM; CONDUCTIVITY; TEMPERATURE; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.jallcom.2016.12.339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanical, electrical and thermal properties as well as thermal expansion of Al/SiC/RHA (rice husk ash) monolayer and bilayer composite have been studied using the Taguchi method and analysis of variance (ANOVA). The parameter that most significantly affects the modulus of elasticity of Al/SiC/RHA bilayer composites is processing time, with contribution percentages of 68 and 27% calculated from stress-strain graphs and ultrasonic method, respectively. However, the factor which mostly affects bending strength, CTE value and electrical resistivity of composites is process temperature with contribution percentages of 32, 28, and 22%, respectively. The projected values for modulus of elasticity (170 GPa), bending strength (369 MPa), CTE (8.9 x 10(-6)/degrees C) and electrical resistivity (0.0019 Omega m) of Al/SiC/RHA composites are in excellent agreement with those obtained in the verification tests under the optimal conditions according to ANOVA. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 322
页数:15
相关论文
共 35 条
[11]   Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures [J].
Geiger, AL ;
Hasselman, DPH ;
Welch, P .
ACTA MATERIALIA, 1997, 45 (09) :3911-3914
[12]  
HATCH JE, 1984, ALUMINUM PROPERTIES, pCH1
[13]  
Hintalla W.W., 1937, ELECT CONDUCTIVITY C
[14]   FEASIBILITY OF ALUMINUM NITRIDE FORMATION IN ALUMINUM-ALLOYS [J].
HOU, QH ;
MUTHARASAN, R ;
KOCZAK, M .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 195 (1-2) :121-129
[15]   THERMAL-STRESSES DUE TO THERMAL-EXPANSION ANISOTROPY IN MATERIALS WITH PREFERRED ORIENTATION [J].
HSUEH, CH ;
BECHER, PF .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1991, 10 (19) :1165-1167
[16]   Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies [J].
Huang, LP ;
Kieffer, J .
PHYSICAL REVIEW B, 2004, 69 (22) :224203-1
[17]  
International A., 2013, C116113 ASTM
[19]   THERMAL CONDUCTIVITY .1. CONCEPTS OF MEASUREMENT AND FACTORS AFFECTING THERMAL CONDUCTIVITY OF CERAMIC MATERIALS [J].
KINGERY, WD ;
MCQUARRIE, MC .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1954, 37 (02) :67-72
[20]   Thermal conductivity in hot-pressed silicon carbide [J].
Liu, DM ;
Lin, BW .
CERAMICS INTERNATIONAL, 1996, 22 (05) :407-414