Dimensionless Enthalpy as Characteristic Factor for Process Control in Laser Powder Bed Fusion

被引:11
作者
Hanemann, Theresa [1 ,2 ]
Seyfert, Christoph [1 ]
Holfelder, Peter [1 ]
Rota, Astrid [1 ]
Heilmaier, Martin [2 ]
机构
[1] EOS Electro Opt Syst GmbH, Krailling, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM WK, Karlsruhe, Germany
来源
JOURNAL OF LASER MICRO NANOENGINEERING | 2020年 / 15卷 / 03期
关键词
laser powder bed fusion; melt pool analysis; dimensionless enthalpy; direct metal laser sintering; base plate homogeneity; ENERGY DENSITY; PARAMETER;
D O I
10.2961/jlmn.2020.03.2017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In laser powder bed fusion (LPBF) melt pool morphology plays an important role in generating part quality and microstructural properties. Therefore, it is of interest to correlate the melt pool dimensions with processing parameters. To overcome the drawback of current energy input equations, like volume energy density, lacking the inclusion of material thermophysical properties, in this investigation dimensionless enthalpy is used as characteristic factor to predict melt pool dimensions of single scan lines. The relation between dimensionless enthalpy and melt pool morphology is investigated for a nickel base alloy and a maraging tool steel. It is shown that melt pool width can be predicted successfully for both materials, while for the prediction of melt pool depth dimensionless enthalpy alone is not sufficient. To account for a deviation in heat loss between the two materials the Fourier number was included in the enthalpy relation. Furthermore, the influence of scan direction and baseplate location on melt pool morphology was evaluated. While a significant dependence on scan direction could not be shown, melt pool depth is found to dependent on part location on the base plate. This dependence has been attributed to the combined effect of laser angle deviation and shielding gas flow.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 25 条
[1]   Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J].
Attar, H. ;
Calin, M. ;
Zhang, L. C. ;
Scudino, S. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 593 :170-177
[2]   On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting [J].
Bertoli, Umberto Scipioni ;
Wolfer, Alexander J. ;
Matthews, Manyalibo J. ;
Delplanque, Jean-Pierre R. ;
Schoenung, Julie M. .
MATERIALS & DESIGN, 2017, 113 :331-340
[3]  
Beyer E., 1995, SCHWEISSEN LASERN, P75
[4]   Fluid and particle dynamics in laser powder bed fusion [J].
Bidare, P. ;
Bitharas, I. ;
Ward, R. M. ;
Attallah, M. M. ;
Moore, A. J. .
ACTA MATERIALIA, 2018, 142 :107-120
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]  
Dilip J. J. S., 2017, PROG ADDIT MANUF, V3, P157
[7]  
Dowding C, 2010, WOODHEAD PUBL MECH E, P575, DOI 10.1533/9781845699819.7.575
[8]   Melt pool and keyhole behaviour analysis for deep penetration laser welding [J].
Fabbro, R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (44)
[9]  
Frey A. F., 2020, MAT SCI TECHNO UNPUB
[10]  
Gong H., 2014, SOLID FREEFORM FABRI, P256, DOI DOI 10.26153/TSW/15682