Renormalization scheme for vector fields on T2 with a diophantine frequency

被引:9
作者
Dias, JL [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1088/0951-7715/15/3/308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a rigorous renormalization scheme for analytic vector fields on T-2 of Poincare type. We show that, iterating this procedure, there is convergence to a limit set with a 'Gauss map' dynamics on it, related to the continued fraction expansion of the slope of the frequencies. This is valid for diophantine frequency vectors.
引用
收藏
页码:665 / 679
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 1966, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], 1995, INTRO DIOPHANTINE AP
[3]  
Anosov D, 1988, MATH USSR IZV, V30, P15
[4]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[5]   3 COUPLED OSCILLATORS - MODE-LOCKING, GLOBAL BIFURCATIONS AND TOROIDAL CHAOS [J].
BAESENS, C ;
GUCKENHEIMER, J ;
KIM, S ;
MACKAY, RS .
PHYSICA D, 1991, 49 (03) :387-475
[6]  
Cassels J. W. S., 1957, An Introduction to Diophantine Approximation
[7]   Scaling law for the critical function of an approximate renormalization [J].
Chandre, C ;
Moussa, P .
NONLINEARITY, 2001, 14 (04) :803-816
[8]  
Denjoy A., 1932, Journal de mathematiques pures et appliquees, V11, P333
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52