Congruence property in conformal field theory

被引:68
作者
Dong, Chongying [1 ]
Lin, Xingjun [2 ]
Ng, Siu-Hung [3 ]
机构
[1] UC Santa Cruz, Dept Math, 194 Baskin Engn, Santa Cruz, CA 95064 USA
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Frobenius-Schur indicator; modular tensor category; modular group; vertex operator algebra; FROBENIUS-SCHUR INDICATORS; VERTEX OPERATOR-ALGEBRAS; MODULAR-INVARIANCE; TENSOR-PRODUCTS; CLASSIFICATION; CATEGORIES; REGULARITY; SYMMETRY;
D O I
10.2140/ant.2015.9.2121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The congruence subgroup property is established for the modular representations associated to any modular tensor category. This result is used to prove that the kernel of the representation of the modular group on the conformal blocks of any rational, C-2-cofinite vertex operator algebra is a congruence subgroup. In particular, the q-character of each irreducible module is a modular function on the same congruence subgroup. The Galois symmetry of the modular representations is obtained and the order of the anomaly for those modular categories satisfying some integrality conditions is determined.
引用
收藏
页码:2121 / 2166
页数:46
相关论文
共 76 条
[1]   Rationality, regularity, and C2-cofiniteness [J].
Abe, T ;
Buhl, G ;
Dong, CY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) :3391-3402
[2]  
[Anonymous], ARXIVMATH9909080
[3]  
[Anonymous], 2000, Algebr. Represent. Theory
[4]  
[Anonymous], 1967, Invent. Math.
[5]  
Bakalov B., 2001, U LECT SERIES, V21
[6]   The kernel of the modular representation and the Galois action in RCFT [J].
Bantay, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) :423-438
[7]   The Frobenius-Schur indicator in conformal field theory [J].
Bantay, P .
PHYSICS LETTERS B, 1997, 394 (1-2) :87-88
[8]   Comments on the links between su(3) modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards [J].
Bauer, M ;
Coste, A ;
Itzykson, C ;
Ruelle, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (02) :134-189
[9]  
BEYL FR, 1986, MATH Z, V191, P23
[10]   MODULAR INVARIANT PARTITION-FUNCTIONS IN 2 DIMENSIONS [J].
CAPPELLI, A ;
ITZYKSON, C ;
ZUBER, JB .
NUCLEAR PHYSICS B, 1987, 280 (03) :445-465