A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data

被引:8
作者
Donneau, A. F. [1 ]
Mauer, M. [2 ]
Molenberghs, G. [3 ,4 ]
Albert, A. [1 ]
机构
[1] Univ Liege, B-4000 Liege, Belgium
[2] EORTC Headquarters, Dept Stat & Qual Life, Brussels, Belgium
[3] Univ Hasselt, I BioStat, Diepenbeek, Belgium
[4] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
关键词
Longitudinal analysis; Missing at random; Multiple imputation; Ordinal variables; 62H12; 62J12; 65C10; 62-04; 92B15; REGRESSION-MODELS;
D O I
10.1080/03610918.2013.818690
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiple imputation (MI) is now a reference solution for handling missing data. The default method for MI is the Multivariate Normal Imputation (MNI) algorithm that is based on the multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the Gaussian assumption is no longer valid, application of the MNI method is questionable. This simulation study compares the performance of the MNI and ordinal imputation regression model for incomplete longitudinal ordinal data for situations covering various numbers of categories of the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced, and skewed data.
引用
收藏
页码:1311 / 1338
页数:28
相关论文
共 25 条
[1]  
Ake C., 2005, SAS US GROUP INT 30
[2]  
Allison PD., 2005, P 30 ANN SAS US GROU
[3]  
[Anonymous], 1987, MULTIPLE IMPUTATION
[4]   A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data [J].
Beunckens, Caroline ;
Sotto, Cristina ;
Molenberghs, Geert .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1533-1548
[5]   Doubly Robust and Multiple-Imputation-Based Generalized Estimating Equations [J].
Birhanu, Teshome ;
Molenberghs, Geert ;
Sotto, Cristina ;
Kenward, Michael G. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (02) :202-225
[6]  
Fay R.E., 1992, ARE INFERENCES MULTI
[7]   TUTORIAL ON THE SWEEP OPERATOR [J].
GOODNIGHT, JH .
AMERICAN STATISTICIAN, 1979, 33 (03) :149-158
[8]   How many imputations are really needed? - Some practical clarifications of multiple imputation theory [J].
Graham, John W. ;
Olchowski, Allison E. ;
Gilreath, Tamika D. .
PREVENTION SCIENCE, 2007, 8 (03) :206-213
[9]   A potential for bias when rounding in multiple imputation [J].
Horton, NJ ;
Lipsitz, SR ;
Parzen, M .
AMERICAN STATISTICIAN, 2003, 57 (04) :229-232
[10]   Generating correlated discrete ordinal data using R and SAS IML [J].
Ibrahim, Noor Akma ;
Suliadi, Suliadi .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E122-E132