ON FINITE-BY-NILPOTENT PROFINITE GROUPS

被引:1
作者
Detomi, Eloisa [1 ]
Morigi, Marta [2 ]
机构
[1] Univ Padua, Dipartimento Ingn Informaz, Via G Gradenigo 6-B, I-35121 Padua, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Conjucagy classes; verbal subgroups; profinite groups; FC-groups;
D O I
10.22108/ijgt.2019.119581.1577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma(n) = [x(1), ... , x(n)] be the nth lower central word. Suppose that G is a profinite group where the conjugacy classes x(gamma n(G)) contains less than 2(aleph 0) elements for any x is an element of G. We prove that then gamma(n+1)(G) has finite order. This generalizes the much celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite. Moreover, it implies that a profinite group G is finite-by-nilpotent if and only if there is a positive integer n such that x(gamma n(G)) contains less than 2(aleph 0) elements, for any x is an element of G.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 16 条
  • [1] Detomi E., Q J MATH
  • [2] Detomi E., P R SOC EDINB
  • [3] Detomi E., ARXIV190702798
  • [4] Detomi E., ARXIV190701344
  • [5] On conciseness of words in profinite groups
    Detomi, Eloisa
    Morigi, Marta
    Shumyatsky, Pavel
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (08) : 3010 - 3015
  • [6] GROUPS WITH BOUNDEDLY FINITE CONJUGACY CLASSES OF COMMUTATORS
    Dierings, Glaucia
    Shumyatsky, Pavel
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (03) : 1047 - 1051
  • [7] Franciosi S, 2002, HOUSTON J MATH, V28, P683
  • [8] Average dimension of fixed point spaces with applications
    Guralnick, Robert M.
    Maroti, Attila
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (01) : 298 - 308
  • [9] Kelley John L, 2017, General Topology
  • [10] Profinite groups with many commuting pairs or involutions
    Lévai, L
    Pyber, L
    [J]. ARCHIV DER MATHEMATIK, 2000, 75 (01) : 1 - 7