Nonergodicity in the Anisotropic Dicke Model

被引:43
作者
Buijsman, Wouter [1 ,2 ]
Gritsev, Vladimir [1 ,2 ]
Sprik, Rudolf [3 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Van der Waals Zeeman Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
关键词
PHASE-TRANSITION; QUANTUM; SUPERRADIANCE; DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevLett.118.080601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the ergodic-nonergodic transition in a generalized Dicke model with independent corotating and counterrotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical probe, we show that the ergodic-nonergodic transition in the Dicke model is a consequence of the proximity to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. In addition, we show that there is no intrinsic relation between the ergodic-nonergodic transition and the precursors of the normal-superradiant quantum phase transition.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Equilibration and macroscopic quantum fluctuations in the Dicke model [J].
Altland, Alexander ;
Haake, Fritz .
NEW JOURNAL OF PHYSICS, 2012, 14
[2]   Quantum Chaos and Effective Thermalization [J].
Altland, Alexander ;
Haake, Fritz .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[3]  
[Anonymous], 2013, Mathematical methods of classical mechanics
[4]  
[Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
[5]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[6]   Realization of the Dicke Model Using Cavity-Assisted Raman Transitions [J].
Baden, Markus P. ;
Arnold, Kyle J. ;
Grimsmo, Arne L. ;
Parkins, Scott ;
Barrett, Murray D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[7]   Short-period attractors and non-ergodic behavior in the deterministic fixed-energy sandpile model [J].
Bagnoli, F ;
Cecconi, F ;
Flammini, A ;
Vespignani, A .
EUROPHYSICS LETTERS, 2003, 63 (04) :512-518
[8]   Non-equilibrium dynamics of Gaudin models [J].
Barmettler, Peter ;
Fioretto, Davide ;
Gritsev, Vladimir .
EPL, 2013, 104 (01)
[9]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[10]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394