Clifford's theorem and higher rank vector bundles

被引:24
作者
Mercat, V [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
关键词
algebraic curves; vector bundles; Clifford's theorem;
D O I
10.1142/S0129167X02001484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give here a refinement of the classical Clifford's theorem for the upper bound of the number of independent global sections of a semistable vector bundle on a smooth curve. We also conjecture a new version of this theorem that takes into account the Clifford index of the curve. In the case of a bi-elliptic curve we obtain a very precise bound. Finally we study the case of rank 2 bundles.
引用
收藏
页码:785 / 796
页数:12
相关论文
共 15 条
  • [1] Arbarello E., 1984, GRUNDLEHREN MATH WIS, VI
  • [2] BALLICO E, 1998, MATH P CAMB PHILOS S, V128, P483
  • [3] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760
  • [4] BrambilaPaz L, 1997, J ALGEBRAIC GEOM, V6, P645
  • [5] PRIMITIVE LINEAR SERIES ON CURVES
    COPPENS, M
    KEEM, C
    MARTENS, G
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) : 237 - 264
  • [6] Ein L., 1992, LONDON MATH SOC LECT, V179, P149
  • [7] MARTENS HH, 1968, CRELLE J, V233, P89
  • [8] Mercat V, 1999, J REINE ANGEW MATH, V506, P1
  • [9] Stable vector bundles of slope 2
    Mercat, V
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 535 - 542
  • [10] MERCAT V, PRES TEXT INTR THEOR