Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

被引:29
作者
Salmi, Tiina [1 ]
Stenvall, Antti [1 ]
Prioli, Marco [2 ]
Ruuskanen, Janne [1 ]
Verweij, Arjan [2 ]
Auchmann, Bernhard [2 ]
Tommasini, Davide [2 ]
Schoerling, Daniel [2 ]
Lorin, Clement [3 ]
Toral, Fernando [4 ]
Durante, Maria [3 ]
Farinon, Stefania [5 ]
Marinozzi, Vittorio [6 ,7 ]
Fabbricatore, Pasquale [5 ]
Sorbi, Massimo [6 ,7 ]
Munilla, Javier [4 ]
机构
[1] Tampere Univ Technol, Dept Elect Engn, PL 52, FIN-33101 Tampere, Finland
[2] CERN, CH-1211 Geneva 23, Switzerland
[3] CEA Saclay, F-91400 Saclay, France
[4] CIEMAT, E-28040 Madrid, Spain
[5] Ist Nazl Fis Nucl, I-16146 Genoa, Italy
[6] Univ Milan, I-20090 Milan, Italy
[7] INFN LASA, I-20090 Milan, Italy
基金
芬兰科学院;
关键词
D O I
10.1103/PhysRevAccelBeams.20.032401
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The EuroCirCol collaboration is designing a 16 T Nb3Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a secure magnet operation.
引用
收藏
页数:12
相关论文
共 21 条
[1]  
Ambrosio G, 2013, CERN REPORT, P43
[2]  
Ambrosio G., 2015, IEEE T APPL SUPERCON, V27
[3]  
[Anonymous], P 11 INT CRYOC C JUN
[4]   Optimizing integrated luminosity of future hadron colliders [J].
Benedikt, Michael ;
Schulte, Daniel ;
Zimmermann, Frank .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (10)
[5]   Instrumentation and Quench Protection for LARP Nb3Sn Magnets [J].
Felice, Helene ;
Ambrosio, Giorgio ;
Chlachidze, Guram ;
Ferracin, Paolo ;
Hafalia, R. ;
Hannaford, R. C. ;
Joseph, J. M. ;
Lietzke, A. F. ;
McInturff, Al D. ;
Muratore, Joseph F. ;
Prestemon, Soren ;
Sabbi, Gian Luca ;
Schmalzle, Jesse ;
Wanderer, Peter ;
Wang, X. R. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :2458-2462
[6]  
IMBASCIATI L, 2003, THESIS
[7]  
Lorin C., 2016, FCC WEEK 2016
[8]  
Marinozzi V., 2017, IEEE T APPL SUPERCON, V27
[9]   Advanced Quench Protection for the Nb3Sn Quadrupoles for the High Luminosity LHC [J].
Ravaioli, E. ;
Auchmann, B. ;
Datskov, V. I. ;
Ghini, J. Blomberg ;
Dahlerup-Petersen, K. ;
Navarro, A. M. Fernandez ;
Kirby, G. ;
Maciejewski, M. ;
Mateos, F. Rodriguez ;
ten Kate, H. H. J. ;
Verweij, A. P. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
[10]  
Ravaioli E., 2015, THESIS