Effects of marker density and minor allele frequency on genomic prediction for growth traits in Chinese Simmental beef cattle

被引:16
|
作者
Zhu Bo [1 ]
Zhang Jing-jing [1 ]
Niu Hong [1 ]
Guan Long [1 ]
Guo Peng [1 ]
Xu Ling-yang [1 ]
Chen Yan [1 ]
Zhang Lu-pei [1 ]
Gao Hui-jiang [1 ]
Gao Xue [1 ]
Li Jun-ya [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Anim Sci, Lab Mol Biol & Bovine Breeding, Beijing 100193, Peoples R China
基金
北京市自然科学基金; 国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
genomic prediction; cross-validation; Chinese Simmental beef cattle; marker density; minor allele frequency (MAF); REFERENCE POPULATION; QUANTITATIVE TRAITS; REGRESSION METHODS; BREEDING VALUES; EFFECT SIZES; ACCURACY; RELIABILITY; IMPUTATION; SUBSETS; ABILITY;
D O I
10.1016/S2095-3119(16)61474-0
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Genomic selection has been demonstrated as a powerful technology to revolutionize animal breeding. However, marker density and minor allele frequency can affect the predictive ability of genomic estimated breeding values (GEBVs). To investigate the impact of marker density and minor allele frequency on predictive ability, we estimated GEBVs by constructing the different subsets of single nucleotide polymorphisms (SNPs) based on varying markers densities and minor allele frequency (MAF) for average daily gain (ADG), live weight (LW) and carcass weight (CW) in 1059 Chinese Simmental beef cattle. Two strategies were proposed for SNP selection to construct different marker densities: 1) select evenly-spaced SNPs (Strategy 1), and 2) select SNPs with large effects estimated from BayesB (Strategy 2). Furthermore, predictive ability was assessed in terms of the correlation between predicted genomic values and corrected phenotypes from 10-fold cross-validation. Predictive ability for ADG, LW and CW using autosomal SNPs were 0.13 +/- 0.002, 0.21 +/- 0.003 and 0.25 +/- 0.003, respectively. In our study, the predictive ability increased dramatically as more SNPs were included in analysis until 200K for Strategy 1. Under Strategy 2, we found the predictive ability slightly increased when marker densities increased from 5K to 20K, which indicated the predictive ability of 20K (3% of 770K) SNPs with large effects was equal to the predictive ability of using all SNPs. For different MAF bins, we obtained the highest predictive ability for three traits with MAF bin 0.01-0.1. Our result suggested that designing a low-density chip by selecting low frequency markers with large SNP effects sizes should be helpful for commercial application in Chinese Simmental cattle.
引用
收藏
页码:911 / 920
页数:10
相关论文
共 50 条
  • [31] Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle
    Maurício A. Mudadu
    Laercio R. Porto-Neto
    Fabiana B. Mokry
    Polyana C. Tizioto
    Priscila S. N. Oliveira
    Rymer R. Tullio
    Renata T. Nassu
    Simone C. M. Niciura
    Patrícia Tholon
    Maurício M. Alencar
    Roberto H. Higa
    Antônio N. Rosa
    Gélson L. D. Feijó
    André L. J. Ferraz
    Luiz O. C. Silva
    Sérgio R. Medeiros
    Dante P. Lanna
    Michele L. Nascimento
    Amália S. Chaves
    Andrea R. D. L. Souza
    Irineu U. Packer
    Roberto A. A. Torres
    Fabiane Siqueira
    Gerson B. Mourão
    Luiz L. Coutinho
    Antonio Reverter
    Luciana C. A. Regitano
    BMC Genomics, 17
  • [32] Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle
    Zhao, Guoyao
    Liu, Yuqiang
    Niu, Qunhao
    Zheng, Xu
    Zhang, Tianliu
    Wang, Zezhao
    Xu, Lei
    Zhu, Bo
    Gao, Xue
    Zhang, Lupei
    Gao, Huijiang
    Li, Junya
    Xu, Lingyang
    BMC GENOMICS, 2021, 22 (01)
  • [33] ESTIMATION OF DIRECT AND MATERNAL (CO)VARIANCE COMPONENTS FOR GROWTH TRAITS IN AUSTRALIAN SIMMENTAL BEEF-CATTLE
    SWALVE, HH
    JOURNAL OF ANIMAL BREEDING AND GENETICS-ZEITSCHRIFT FUR TIERZUCHTUNG UND ZUCHTUNGSBIOLOGIE, 1993, 110 (04): : 241 - 252
  • [34] Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle
    Guoyao Zhao
    Yuqiang Liu
    Qunhao Niu
    Xu Zheng
    Tianliu Zhang
    Zezhao Wang
    Lei Xu
    Bo Zhu
    Xue Gao
    Lupei Zhang
    Huijiang Gao
    Junya Li
    Lingyang Xu
    BMC Genomics, 22
  • [35] Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels
    Zhu, M.
    Zhu, B.
    Wang, Y. H.
    Wu, Y.
    Xu, L.
    Guo, L. P.
    Yuan, Z. R.
    Zhang, L. P.
    Gao, X.
    Gao, H. J.
    Xu, S. Z.
    Li, J. Y.
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2013, 26 (06): : 772 - 779
  • [36] Genomic prediction of continuous and binary fertility traits of females in a composite beef cattle breed
    Toghiani, S.
    Hay, E.
    Sumreddee, P.
    Geary, T. W.
    Rekaya, R.
    Roberts, A. J.
    JOURNAL OF ANIMAL SCIENCE, 2017, 95 (11) : 4787 - 4795
  • [37] Erratum to: ‘Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle’
    Maurício A. Mudadu
    Laercio R. Porto-Neto
    Fabiana B. Mokry
    Polyana C. Tizioto
    Priscila S. N. Oliveira
    Rymer R. Tullio
    Renata T. Nassu
    Simone C. M. Niciura
    Patrícia Tholon
    Maurício M. Alencar
    Roberto H. Higa
    Antônio N. Rosa
    Gélson L. D. Feijó
    André L. J. Ferraz
    Luiz O. C. Silva
    Sérgio R. Medeiros
    Dante P. Lanna
    Michele L. Nascimento
    Amália S. Chaves
    Andrea R. D. L. Souza
    Irineu U. Packer
    Roberto A. A. Torres
    Fabiane Siqueira
    Gerson B. Mourão
    Luiz L. Coutinho
    Antonio Reverter
    Luciana C. A. Regitano
    BMC Genomics, 17
  • [38] Joint association analysis of additive and non-additive genomic effects for growth and carcass traits of beef cattle
    Akanno, E. C.
    Abo-Ismail, M. K.
    Chen, L.
    Li, C.
    Basarab, J.
    Plastow, G.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 149 - 149
  • [39] Association of genetic variations in the ACLY gene with growth traits in Chinese beef cattle
    Li, M. N.
    Guo, X.
    Bao, P. J.
    Wu, X. Y.
    Ding, X. Z.
    Chu, M.
    Liang, C. N.
    Yan, P.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [40] Fitting Genomic Prediction Models with Different Marker Effects among Prefectures to Carcass Traits in Japanese Black Cattle
    Ogawa, Shinichiro
    Taniguchi, Yukio
    Watanabe, Toshio
    Iwaisaki, Hiroaki
    GENES, 2023, 14 (01)