Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

被引:79
作者
Li, Binsong [1 ]
Bian, Kaifu [1 ]
Lane, J. Matthew D. [1 ]
Salerno, K. Michael [1 ]
Grest, Gary S. [1 ]
Ao, Tommy [1 ]
Hickman, Randy [1 ]
Wise, Jack [1 ]
Wang, Zhongwu [2 ]
Fan, Hongyou [1 ,3 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
[3] Univ New Mexico, Dept Chem & Biol Engn, Ctr Microengn Mat, Albuquerque, NM 87106 USA
关键词
SILVER NANOSTRUCTURES; FORCE-FIELD; NANOPARTICLES; PHASE; NANOCRYSTALS; PRESSURE; AU;
D O I
10.1038/ncomms14778
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gold nanostructured materials exhibit important size-and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
引用
收藏
页数:7
相关论文
共 35 条
[1]   A compact strip-line pulsed power generator for isentropic compression experiments [J].
Ao, T. ;
Asay, J. R. ;
Chantrenne, S. ;
Baer, M. R. ;
Hall, C. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (01)
[2]   Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6279-6292
[3]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[4]  
Chantrenne S, 2009, AIP CONF PROC, V1195, P695
[5]  
FOILES SM, 1986, PHYS REV B, V33, P7983, DOI 10.1103/PhysRevB.33.7983
[6]   Unexpected high stiffness of Ag and Au nanoparticles [J].
Gu, Q. F. ;
Krauss, G. ;
Steurer, W. ;
Gramm, F. ;
Cervellino, A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[7]   Size Dependence of Cubic to Trigonal Structural Distortion in Silver Micro- and Nanocrystals under High Pressure [J].
Guo, Qixun ;
Zhao, Yusheng ;
Wang, Zhongwu ;
Skrabalak, Sara E. ;
Lin, Zhijun ;
Xia, Younan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (51) :20135-20137
[8]   Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J].
Hall, CA ;
Asay, JR ;
Knudson, MD ;
Stygar, WA ;
Spielman, RB ;
Pointon, TD ;
Reisman, DB ;
Toor, A ;
Cauble, RC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09) :3587-3595
[9]   VELOCITY SENSING INTERFEROMETER (VISAR) MODIFICATION [J].
HEMSING, WF .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1979, 50 (01) :73-78
[10]   Template-assisted formation of gradient concentric gold rings [J].
Hong, Suck Won ;
Xu, Jun ;
Lin, Zhiqun .
NANO LETTERS, 2006, 6 (12) :2949-2954